以下方法都是按照这个套路:
考虑一个不一定连通的 DAG ,你枚举一些零度点(拓扑序第一层)集合 \(S\),这些点之间不能连边,这些点跟剩下点(点集为 \(T\),\(|S| \cup |T| = |V|\))的连边只能由 \(S \rightarrow T\),\(T\) 是一个 DAG。
但这样算会重复,因为没有考虑到其他 \(T\) 中的零度点,会算重,然而显然是二项式的容斥形式,带上容斥系数 \((-1)^{|S|+1}\) 即可。

有标号 DAG 图计数(不要求连通)

\(n\le 200000\)

Sol

根据上述即 \(f(n)=\sum_{i=1}^n (-1)^{i+1} {n\choose i}f(n-i)2^{i(n-i)}\),多项式求逆可以做到 \(O(nlogn)\)。

有标号 DAG 图计数(要求弱连通)

\(n\le 200000\)

Sol

根据集合与划分的关系设不一定连通的 DAG 的 EGF 为 F,设连通的 DAG 的 EGF 为 G,\(F=e^G\rightarrow G=\ln(F)\)

DAG 子图计数

给定 \(m\) 条边,每条边各有 \(\frac{1}{3}\) 的概率 \(u \rightarrow v\)、\(v \rightarrow u\) 或断开。
求这个图是 DAG 的概率,无重边无自环。

\(n\le 20,m\le n^2\)

Sol

状压 DP,\(dp_S=\sum_{T\subset S,T\ne \varnothing} (-1)^{|T|+1} dp_{S-T} P_1(S) P_2(S\rightarrow T)\),两个概率的式子都很容易写出来。
可以用子集卷积优化到 \(O(n^22^n)\)。

DAG 子图计数

你有一个 \(n\) 个节点的有向图,我们称一个合法的方案是将其中一些边的方向翻转之后使得剩下的图无环。
对于所有合法的方案,将方案中翻转方向的边的数量求和。

\(n\le 20\)

Sol

注意一个方案倒转后依然合法,那么这两个图的贡献和为 \(m\),我们可以直接计数 DAG 的数目。
状压 DP, 枚举第一层点转移,子集卷积优化 \(O(n^22^n)\)

DAG 计数的更多相关文章

  1. 有标号DAG计数 [容斥原理 子集反演 组合数学 fft]

    有标号DAG计数 题目在COGS上 [HZOI 2015]有标号的DAG计数 I [HZOI 2015] 有标号的DAG计数 II [HZOI 2015]有标号的DAG计数 III I 求n个点的DA ...

  2. 有标号的DAG计数(FFT)

    有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...

  3. Comet Contest#11 F arewell(DAG计数+FWT子集卷积)

    传送门. 题解: 4月YY集训时做过DAG计数,和这个基本上是一样的,但是当时好像直接暴力子集卷积,不然我省选时不至于不会,这个就多了个边不选的概率和子集卷积. DAG计数是个套路来的,利用的是DAG ...

  4. COGS2356 【HZOI2015】有标号的DAG计数 IV

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...

  5. COGS2355 【HZOI2015】 有标号的DAG计数 II

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...

  6. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  7. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  8. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  9. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

  10. P6295 有标号 DAG 计数

    P6295 有标号 DAG 计数 题意 求 \(n\) 个点有标号弱联通 DAG 数量. 推导 设 \(f_i\) 表示 \(i\) 个点有标号 DAG 数量(不保证弱联通),有: \[f(i)=\s ...

随机推荐

  1. Microsonf visual c++ 14+ 离线内网安装

    内网离线安装方法:先下载官方的visualcppbuildtools: <br  href=http://go.microsoft.com/fwlink/?LinkId=691126 >& ...

  2. Centos7搭建Apache2.4

    我不多说废话了,相信在座的都应该明白怎么安装Apache2.4,我这才用yum源安装的,我个人认为这样安装的话,可以节省一些时间,有的网络不是很好,要等一段时间. 配置与Apache2.2的版本有点变 ...

  3. es2.0的语法学习

    确定文档和查询有多么相关的过程被称为打分(scoring):将查询作为输入,使用不同的手段来确定每一篇文档的得分,将每一个因素最后通过公式综合起来,返回该文档的最终得分.这个综合考量的过程,就是我们希 ...

  4. C++-POJ3321-Apple Tree[数据结构][树状数组]

    树上的单点修改+子树查询 用dfn[u]和num[u]可以把任意子树表示成一段连续区间,此时结合树状数组就好了 #include <set> #include <map> #i ...

  5. SpringMVC-时间类型转换

    在上一篇SpringMVC的提交表单中,我们使用的日期为String型,可以将日期转换为Date型,然后使用initBinder函数进行显示,具体代码如下: (1)首先更改User.java的birt ...

  6. SparkStreaming个人记录

    一.SparkStreaming概述 SparkStreaming是一种构建在Spark基础上的实时计算框架,它扩展了Spark处理大规模流式数据的能力,以吞吐量高和容错能力强著称. SparkStr ...

  7. python 字符串是否包含某个子字符串

    方法如下:以后再整理 if str1 in str2: 包含的话,True if str1.find(str2)>=0: 包含的话,返回第一次出现的位置,没有的话为负数 https://www. ...

  8. hz和s和脉冲

    先弄清楚定义,HZ是频率的单位,而s是周期的单位:而f=1/T. 故1hz=1s:5hz=1/5=0.02s; 占空比    占空比(Duty Ratio)在电信领域中有如下含义:    在一串理想的 ...

  9. 建立Web Service 接口及调用

    WEB SERVICE 接口: [WebMethod] public string MaterialRequest(string jsonText) { string WorkNo; string P ...

  10. android底部导航栏实现

    第一种用radiobutton实现 https://wizardforcel.gitbooks.io/w3school-android/content/75.html 布局文件,使用radiogrou ...