最近愉快地决定要由边集数组转向Vector存图,顺便开始图论集训

老惯例,以题写模板

P1339 [USACO09OCT]热浪Heat Wave

题目描述

The good folks in Texas are having a heatwave this summer. Their Texas Longhorn cows make for good eating but are not so adept at creating creamy delicious dairy products. Farmer John is leading the charge to deliver plenty of ice cold nutritious milk to Texas so the Texans will not suffer the heat too much.

FJ has studied the routes that can be used to move milk from Wisconsin to Texas. These routes have a total of T (1 <= T <= 2,500) towns conveniently numbered 1..T along the way (including the starting and ending towns). Each town (except the source and destination towns) is connected to at least two other towns by bidirectional roads that have some cost of traversal (owing to gasoline consumption, tolls, etc.). Consider this map of seven towns; town 5 is the

source of the milk and town 4 is its destination (bracketed integers represent costs to traverse the route):


[1]----1---[3]-
/ \
[3]---6---[4]---3--[3]--4
/ / /|
5 --[3]-- --[2]- |
\ / / |
[5]---7---[2]--2---[3]---
| /
[1]------

Traversing 5-6-3-4 requires spending 3 (5->6) + 4 (6->3) + 3 (3->4) = 10 total expenses.

Given a map of all the C (1 <= C <= 6,200) connections (described as two endpoints R1i and R2i (1 <= R1i <= T; 1 <= R2i <= T) and costs (1 <= Ci <= 1,000), find the smallest total expense to traverse from the starting town Ts (1 <= Ts <= T) to the destination town Te (1 <= Te <= T).

德克萨斯纯朴的民眾们这个夏天正在遭受巨大的热浪!!!他们的德克萨斯长角牛吃起来不错,可是他们并不是很擅长生產富含奶油的乳製品。Farmer John此时以先天下之忧而忧,后天下之乐而乐的精神,身先士卒地承担起向德克萨斯运送大量的营养冰凉的牛奶的重任,以减轻德克萨斯人忍受酷暑的痛苦。

FJ已经研究过可以把牛奶从威斯康星运送到德克萨斯州的路线。这些路线包括起始点和终点先一共经过T (1 <= T <= 2,500)个城镇,方便地标号為1到T。除了起点和终点外地每个城镇由两条双向道路连向至少两个其它地城镇。每条道路有一个通过费用(包括油费,过路费等等)。

给定一个地图,包含C (1 <= C <= 6,200)条直接连接2个城镇的道路。每条道路由道路的起点Rs,终点Re (1 <= Rs <= T; 1 <= Re <= T),和花费(1 <= Ci <= 1,000)组成。求从起始的城镇Ts (1 <= Ts <= T)到终点的城镇Te(1 <= Te <= T)最小的总费用。

输入输出格式

输入格式:

第一行: 4个由空格隔开的整数: T, C, Ts, Te

第2到第C+1行: 第i+1行描述第i条道路。有3个由空格隔开的整数: Rs, Re和Ci

输出格式:

一个单独的整数表示从Ts到Te的最小总费用。数据保证至少存在一条道路。

输入输出样例

输入样例#1:

7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1
输出样例#1:

7

说明

【样例说明】

5->6->1->4 (3 + 1 + 3)

最短路模板题。

Vector存图原理:

边结构体Edge{int cost,int from,int to}

Edge edge[MAXE]

vector<int> G[MAXV];向量G[MAXV][i]代表从MAXV出发的第i条边在edge中的编号

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue> using namespace std; const int MAXV = 2500 + 10;
const int MAXE = 6200 + 10; struct Edge
{
int from,to,c;
Edge(int u,int v,int cost):from(u),to(v),c(cost){}
Edge(){}
};
Edge edge[MAXE * 2];
vector<int> G[MAXV]; int read()
{
int x = 0;char ch = getchar();char c = ch;
while(ch < '0' && ch > '9')c = ch,ch = getchar();
while(ch >= '0' && ch <= '9')x = x * 10 + ch - '0',ch = getchar();
if(c == '-')x = -1 * x;
return x;
} const int INF = 0x3f3f3f3f; int s,t,n,m;
bool b[MAXV];
int d[MAXV]; void SPFA()
{
memset(b,0,sizeof(b));
memset(d,0x3f,sizeof(d));
d[s] = 0;
queue<int> q;
q.push(s);
while(!q.empty())
{
int x = q.front();
q.pop();
b[x] = false;
int num = G[x].size();
for(int i = 0;i < num;i ++)
{
int p = G[x][i];
Edge temp = edge[p];
p = temp.to;
if(d[x] + temp.c < d[p])
{
d[p] = d[x] + temp.c;
if(!b[p])
{
b[p] = true;
q.push(p);
}
}
}
}
} int main()
{
n = read();m = read();s = read();t = read();
int temp1,temp2,temp3;
for(int i = 1;i <= m * 2;i +=2)
{
temp1 = read();temp2 = read();temp3 = read();
edge[i] = Edge(temp1,temp2,temp3);
edge[i + 1] = Edge(temp2,temp1,temp3);
G[temp1] .push_back(i);
G[temp2] .push_back(i + 1);
}
SPFA();
printf("%d", d[t]);
return 0;
}

【模板】Vector存图 + SPFA的更多相关文章

  1. POJ 1655.Balancing Act-树的重心(DFS) 模板(vector存图)

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17497   Accepted: 7398 De ...

  2. B - Cow Marathon DFS+vector存图

    After hearing about the epidemic of obesity in the USA, Farmer John wants his cows to get more exerc ...

  3. POJ 1985.Cow Marathon-树的直径-树的直径模板(BFS、DFS(vector存图)、DFS(前向星存图))

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 7536   Accepted: 3559 Case ...

  4. How far away(DFS+vector存图)

    There are n houses in the village and some bidirectional roads connecting them. Every day peole alwa ...

  5. Codeforce-1106-D. Lunar New Year and a Wander(DFS遍历+vector存图+set)

    Lunar New Year is approaching, and Bob decides to take a wander in a nearby park. The park can be re ...

  6. Neither shaken nor stirred(DFS理解+vector存图)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=2013 题目理解: 给定n个点的有向图: 下面n行,第一个数字表示点权,后面一个数字m表示 ...

  7. 存图方式---邻接表&邻接矩阵&前向星

    基于vector存图 struct Edge { int u, v, w; Edge(){} Edge(int u, int v, int w):u(u), v(v), w(w){} }; vecto ...

  8. Safe Path(bfs+一维数组存图)

    题目链接:http://codeforces.com/gym/101755/problem/H 题目分析:先bfs一遍怪兽可以到达的点,再bfs人可以走的地方看可不可以到达终点: 很显然读到  2&l ...

  9. 最短路 spfa 算法 && 链式前向星存图

    推荐博客  https://i.cnblogs.com/EditPosts.aspx?opt=1 http://blog.csdn.net/mcdonnell_douglas/article/deta ...

随机推荐

  1. Joomla - T3模板(非常好用的4屏响应式模板)

    一.下载 T3 模板 下载地址(需要注册登录才能下载):https://www.joomlart.com/member/downloads/joomlart/t3-framework/t3-blank ...

  2. Struts2中param的作用

    1.页面传参与配置传参的区别:如果页面Form表单的参数在Action类中有相应的setter方法,则会优先取页面Form表单传过来的值,如果页面没有该属性同名的参数,则会从配置文件中取同名的参数值作 ...

  3. ES6 学习笔记(基础)

    书链接:http://es6.ruanyifeng.com/ #.let let 不存在“变量提升” 暂时性死区(即:let 所定义的变量在局部作用域中不受外界影响) var tmp = 123; i ...

  4. myeclipse 无法部署项目到jboss服务器 部署不上去

    关于myeclipse部署项目到jboss点击add deployments没有反应的问题,如图 此处点击右键,选择add deployments没有反应,原因是默认的web-root folder为 ...

  5. 《DSP using MATLAB》Problem 8.25

    用match-z方法,将模拟低通转换为数字低通 代码: %% --------------------------------------------------------------------- ...

  6. C#窗体随意移动

    //全区域移动 const int WM_NCLBUTTONDOWN = 0xA1; const int HT_CAPTION = 0x2; [DllImport("user32.dll&q ...

  7. kafka数据祸福和failover

    k CAP帽子理论. consistency:一致性 Availability:可用性 partition tolerance:分区容忍型 CA :mysql oracle(抛弃了网络分区) CP:h ...

  8. vue-admin-template模板添加tagsview

    参考: https://github.com/PanJiaChen/vue-admin-template/issues/349 一.从vue-element-admin复制文件: vue-admin- ...

  9. mysql导入数据

    1.准备sql文件:第一句话就是指定要操作的数据库,然后是insert语句,或者update语句或者delete语句 2.登录数据库,并执行:    source       sql文件位置 不要直接 ...

  10. List -- 列表的一些操作

    1,基本操作 2,内建函数 3,方法Method