一、特点

数据必须是原始数据不能经过处理,数据连续型,显示一组或多组分布数据

histogram 直方图

normed 定额

二、核心

hist(x, bins=None, normed=None)
# x是需要统计的数据,类型:数组
# bins是组数, 组数 = (max(数组)- min(数组))//组距
# normed 默认为:频数分布直方图, 值为True为: 频率分布直方图

三、示例

1、频数直方图

from matplotlib import pyplot as plt
from matplotlib import font_manager a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
101, 110,
116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86, 95, 144,
105, 126,
130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137, 123, 128, 125, 104,
109, 134,
125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115, 132, 145, 119, 121, 112, 139,
138, 109,
132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102, 123, 107, 143, 115, 136, 118, 139, 123, 112,
118, 125, 109,
119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123,
111, 110, 111,
100, 154, 136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118,
127, 121, 114,
125, 126, 114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117,
112, 81, 97,
139, 113, 134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112,
83, 94, 146,
133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150, 120] my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msjh.ttc")
# 设置图行大小
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
movie_width = 3
num_bins = (max(a) - min(a)) // movie_width
plt.hist(a, num_bins)
# 定制x轴刻度和label
_x = list(range(min(a), max(a) + 1))
plt.xticks(_x[::movie_width])
# 添加网格
plt.grid()
# 添加说明
plt.xlabel("电影时长 单位(分)", fontproperties=my_font)
plt.ylabel("数量", fontproperties=my_font)
plt.title("电影时长频数分布直方图", fontproperties=my_font)
# 展示图片
plt.show()

2、频率直方图

频数直方图->频率直方图, 只需要在绘图的时候添加 normed=True 即可

plt.hist(a, num_bins, normed=True)

注意:

MatplotlibDeprecationWarning:
The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
plt.hist(a, num_bins, normed=True)

四、条形图->直方图

目的:解决处理后的数据不能使用直方图的问题

方案:

1.绘图时,width=1或height=1
2.设置x轴或y轴的刻度,注意设置刻度和绘图之间没有直接的关系

例子

from matplotlib import pyplot as plt
from matplotlib import font_manager
#
my_font = font_manager.FontProperties(fname="C:\Windows\Fonts\msjh.ttc")
interval = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 90]
width = [5, 5, 5, 5, 5, 5, 5, 5, 5, 15, 30, 60]
quantity = [836, 2737, 3723, 3926, 3596, 1438, 3273, 642, 824, 613, 215, 47]
# 显示中文 # 设置图行大小
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.bar(range(len(interval)), quantity, width=1) # 设置x轴刻度和label
_x = range(len(interval) + 1)
_x_ticks = [i - 0.5 for i in _x]
_x_label = interval + [150]
plt.xticks(_x_ticks, _x_label)
# 添加说明
plt.xlabel("间隔", fontproperties=my_font)
plt.ylabel("数量", fontproperties=my_font)
plt.title("人口普查", fontproperties=my_font)
# 添加网格
plt.grid()
# 展示图片
plt.show()

matplotlib 直方图的更多相关文章

  1. matplotlib 直方图绘制详解

    n, bins, patches = plt.hist(datasets, bins, normed=False, facecolor=None, alpha=None) 函数说明 用于绘制多个数据集 ...

  2. 【Python】matplotlib直方图纵轴显示百分比

    其实很简单,就是算了一下百分比权重,乘以了一个权重值 import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatt ...

  3. Matplotlib直方图绘制技巧

    情境引入 我们在做机器学习相关项目时,常常会分析数据集的样本分布,而这就需要用到直方图的绘制. 在Python中可以很容易地调用matplotlib.pyplot的hist函数来绘制直方图.不过,该函 ...

  4. matplotlib直方图

    import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.font_manager import FontPro ...

  5. Matplotlib 饼图

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

  6. Matplotlib 多个图形

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

  7. Matplotlib 图形绘制

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

  8. Matplotlib 安装

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

  9. Matplotlib 入门

    章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...

随机推荐

  1. P1000 A+B Problem

    题目描述 给定两个整数\(a,b\),输出它们的和. 输入格式 输入两个整数,表示\(a,b(1 \le a,b \le 10^9)\). 输出格式 输出一个整数,表示答案. 样例输入 20 30 样 ...

  2. 深度学习——CNN

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 思想 filter尺寸 ...

  3. javascript异步编程 Async/await

    Async/await Async/await 在学习他之前应当补充一定的 promise 知识 它是一种与 promise 相配合的特殊语法,目前被认为是异步编程的终级解决方案 值得我们每一个人学习 ...

  4. 前端导出&配置问题

    <button class="search" onclick="method5('dataTable');">导出</button> 在 ...

  5. CF140CNew Year Snowmen

    CF140C 题目大意:堆雪人,需要三个大小不同的雪球,现有\(n\)个给定大小的雪球,问最多堆多少个雪人 一个很明显的思路是把每种雪球出现的个数记录下来,然后直接扔到大根堆里面,每次选择剩下出现次数 ...

  6. dotnet core 隐藏控制台

    如果写一个控制台程序,需要隐藏这个控制台程序,可以使用本文的方法 如果是在 Windows 下运行, 可以使用一些系统提供的方法隐藏控制台.如果是 Linux 下,都是控制台,就不用隐藏了 复制下面的 ...

  7. 关于MySQL中查询大数据量的情况下分页limit的性能优化

    https://blog.csdn.net/weixin_37848710/article/details/80772725

  8. map实现删除给定字符串中的小写字母

    def del_lowerletters(s): if s>='a' and s<='z': return " " else: return s print(" ...

  9. 002.MFC_对话框_静态文本_编辑框

    一.建立 名为dialogAndCtl的MFC工程,并添加如图控件 1.将上方static text 控件 Caption属性设置为在文本框中如数文本,可以统计字符 2.edit control控件属 ...

  10. 超简单!pytorch入门教程(二):Autograd

    一.autograd自动微分 autograd是专门为了BP算法设计的,所以这autograd只对输出值为标量的有用,因为损失函数的输出是一个标量.如果y是一个向量,那么backward()函数就会失 ...