【CF516D】Drazil and Morning Exercise
首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一
首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\)数组了
当然可以树形\(\rm dp\),设\(f_{x,i,j}\)表示在\(x\)子树内部选择一个最大值为\(i\)最小值为\(j\)的最大联通块是多少,显然这样的复杂度奇高无比
考虑把求出的直径来好好利用一下
首先感性的发现一下,设\(x\)为直径中点,那么\(d(x)\)肯定是最小的点权,又发现我们钦定\(x\)为根,那么一个点的点权肯定比其子树内部的点都要小
那么我们就钦定\(x\)为根,之后枚举一个联通块的最高点\(i\),也就是点权的最小值
由于深度越大点权越大,于是我们就把这个子树内部所有点权不超过\(d(i)+L\)的点都选上,这显然构成一个联通块
于是问题转化成了求一个子树内部有多少个点的点权小于某个给定值,不难发现这是主席树裸题
说的好,于是我选择\(\rm dsu\ on\ tree\),复杂度\(O(nq\log n+n\log^2n)\),莫名其妙跑得比并查集老哥们快
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
#define lb(x) ((x)&(-x))
#define max(a,b) ((a)>(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=1e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
int n,m,num,Rt,rt,sz,S;
int head[maxn],sum[maxn],son[maxn],pos[maxn],dep[maxn],d[maxn],Ans[55];
LL pre[maxn],mx[maxn],q[55],c[maxn];
inline void add(int x,int y,int w) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=w;
}
inline int find(LL x) {
int l=1,r=sz,now=0;
while(l<=r) {
int mid=l+r>>1;
if(c[mid]<=x) now=mid,l=mid+1;else r=mid-1;
}
return now;
}
void dfs(int x,int fa) {
for(re int i=head[x];i;i=e[i].nxt) {
if(e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;
dfs(e[i].v,x);
}
}
void dfs1(int x) {
sum[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(dep[e[i].v]) continue;
dep[e[i].v]=dep[x]+1;dfs1(e[i].v);sum[x]+=sum[e[i].v];
if(sum[e[i].v]>sum[son[x]]) son[x]=e[i].v;
}
}
inline void add(int x,int v) {
for(re int i=x;i<=sz;i+=lb(i)) d[i]+=v;
}
inline int ask(int x) {
int now=0;
for(re int i=x;i;i-=lb(i)) now+=d[i];
return now;
}
void calc(int x,int o) {
add(pos[x],o);
for(re int i=head[x];i;i=e[i].nxt)
if(dep[e[i].v]>dep[x]&&S!=e[i].v) calc(e[i].v,o);
}
void dsu(int x,int k) {
for(re int i=head[x];i;i=e[i].nxt)
if(dep[e[i].v]>dep[x]&&son[x]!=e[i].v) dsu(e[i].v,0);
if(son[x]) dsu(son[x],1);
S=son[x],calc(x,1),S=0;
for(re int i=1;i<=m;i++) {
int g=ask(find(mx[x]+q[i]));
Ans[i]=max(Ans[i],g);
}
if(!k) calc(x,-1);
}
int main() {
n=read();
for(re int x,y,w,i=1;i<n;++i)
x=read(),y=read(),w=read(),add(x,y,w),add(y,x,w);
m=read();for(re int i=1;i<=m;i++) scanf("%lld",&q[i]);
dfs(1,0);rt=1;
for(re int i=2;i<=n;i++) if(pre[i]>pre[rt]) rt=i;
pre[rt]=0;dfs(rt,0);Rt=1;
for(re int i=1;i<=n;i++) mx[i]=pre[i];
for(re int i=2;i<=n;i++) if(pre[i]>pre[Rt]) Rt=i;
pre[Rt]=0;dfs(Rt,0);
for(re int i=1;i<=n;i++) mx[i]=max(mx[i],pre[i]);
rt=1;for(re int i=2;i<=n;i++) if(mx[i]<mx[rt]) rt=i;
dep[rt]=1;dfs1(rt);
for(re int i=1;i<=n;i++) c[i]=mx[i];
std::sort(c+1,c+n+1);sz=std::unique(c+1,c+n+1)-c-1;
for(re int i=1;i<=n;i++) pos[i]=find(mx[i]);
dsu(rt,1);for(re int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}
【CF516D】Drazil and Morning Exercise的更多相关文章
- 「CF516D」 Drazil and Morning Exercise
「CF516D」 Drazil and Morning Exercise 传送门 这个 \(f_i\) 显然可以通过树形 \(\texttt{DP}\) 直接求. 然后看到这种差值问题感觉就可以二分转 ...
- 【Cf #292 D】Drazil and Morning Exercise(树的直径,树上差分)
有一个经典的问题存在于这个子问题里,就是求出每个点到其他点的最远距离. 这个问题和树的直径有很大的关系,因为事实上距离每个点最远的点一定是直径的两个端点.所以我们可以很容易地进行$3$遍$Dfs$就可 ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
- 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 1 线性回归
作业说明 Exercise 1,Week 2,使用Octave实现线性回归模型.数据集 ex1data1.txt ,ex1data2.txt 单变量线性回归必须实现,实现代价函数计算Computin ...
- 【codeforces 515D】Drazil and Tiles
[题目链接]:http://codeforces.com/contest/515/problem/D [题意] 给你一个n*m的格子; 然后让你用1*2的长方形去填格子的空缺; 如果有填满的方案且方案 ...
- 【codeforces 515C】Drazil and Factorial
[题目链接]:http://codeforces.com/contest/515/problem/C [题意] 定义f(n)=n这个数各个位置上的数的阶乘的乘积; 给你a; 让你另外求一个不含0和1的 ...
- 【codeforces 515B】Drazil and His Happy Friends
[题目链接]:http://codeforces.com/contest/515/problem/B [题意] 第i天选择第i%n个男生,第i%m个女生,让他们一起去吃饭; 只要这一对中有一个人是开心 ...
- 【codeforces 515A】Drazil and Date
[题目链接]:http://codeforces.com/contest/515/problem/A [题意] 每次只能走到相邻的四个格子中的一个; 告诉你最后走到了(a,b)走了多少步->s ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
随机推荐
- 牛客网暑期ACM多校训练营(第五场) Agpa (最大化平均值)
题目大意: 给定 n 门课以及它们的学分和绩点,定义总绩点是所有课的加权平均数,给定一个数 k, 你可以删除最多 k 门课,求你的总绩点最大能到多少 分析: 上面是牛客的官方题解,其实就是移项, 然后 ...
- Selenium2Library中select frame关键字对没有name和id的frame或者iframe的处理
elenium2Library中原有的select_frame函数(对应的关键字为select frame)可根据locator选择frame,但是,若某个frame或者iframe没有id,没有na ...
- Django+paramiko实现webshell
说明 基于 python3.7 + django 2.2.3 实现的 django-webshell,支持颜色显示,支持 tab 命令补全,项目地址:https://github.com/leffss ...
- CodeForces-1249D2-Too Many Segments (hard version) -STL+贪心
The only difference between easy and hard versions is constraints. You are given nn segments on the ...
- java-day27
## Bootstrap: 1. 概念: 一个前端开发的框架,Bootstrap,来自 Twitter,是目前很受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JavaScri ...
- java反射机制以及应用
JAVA反射机制+动态运行编译期不存在的JAVA程序 一.有关JAVA反射 在运行期间,在不知道某个类A的内部方法和属性时,能够动态的获取信息.获取类或对象的方法.属性的功能,称之为反射. 1.相关类 ...
- 【学术篇】SDOI2009 SuperGCD
特别说明: 为了避免以后搬家时的麻烦, 这里的文章继续沿用csdn的风格和分类好了~ Emmmm这个题是一道高精度的模板题啊~ 既然是高精度的裸题, 那我们这些懒人当然是选择:用python啦~ 懒癌 ...
- CSIC_716_20191207【并发编程---进程与线程】
僵尸进程与孤儿进程 ........... 守护进程 from Multiprocessing import Process 在 suboprocess.start( ) 的上一行,增加 subpr ...
- ajax--getJSON
penson.json [ { "name":"张三", "age":25, "sex":"男", ...
- [转]C# 动态调用 WebService
通常我们在程序中需要调用WebService时,都是通过“添加Web引用”,让VS.NET环境来为我们生成服务代理,然后调用对应的Web服务.这样是使工作简单了,但是却和提供Web服务的URL.方法名 ...