【CF516D】Drazil and Morning Exercise
首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一
首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\)数组了
当然可以树形\(\rm dp\),设\(f_{x,i,j}\)表示在\(x\)子树内部选择一个最大值为\(i\)最小值为\(j\)的最大联通块是多少,显然这样的复杂度奇高无比
考虑把求出的直径来好好利用一下
首先感性的发现一下,设\(x\)为直径中点,那么\(d(x)\)肯定是最小的点权,又发现我们钦定\(x\)为根,那么一个点的点权肯定比其子树内部的点都要小
那么我们就钦定\(x\)为根,之后枚举一个联通块的最高点\(i\),也就是点权的最小值
由于深度越大点权越大,于是我们就把这个子树内部所有点权不超过\(d(i)+L\)的点都选上,这显然构成一个联通块
于是问题转化成了求一个子树内部有多少个点的点权小于某个给定值,不难发现这是主席树裸题
说的好,于是我选择\(\rm dsu\ on\ tree\),复杂度\(O(nq\log n+n\log^2n)\),莫名其妙跑得比并查集老哥们快
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
#define lb(x) ((x)&(-x))
#define max(a,b) ((a)>(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=1e5+5;
struct E{int v,nxt,w;}e[maxn<<1];
int n,m,num,Rt,rt,sz,S;
int head[maxn],sum[maxn],son[maxn],pos[maxn],dep[maxn],d[maxn],Ans[55];
LL pre[maxn],mx[maxn],q[55],c[maxn];
inline void add(int x,int y,int w) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=w;
}
inline int find(LL x) {
int l=1,r=sz,now=0;
while(l<=r) {
int mid=l+r>>1;
if(c[mid]<=x) now=mid,l=mid+1;else r=mid-1;
}
return now;
}
void dfs(int x,int fa) {
for(re int i=head[x];i;i=e[i].nxt) {
if(e[i].v==fa) continue;
pre[e[i].v]=pre[x]+e[i].w;
dfs(e[i].v,x);
}
}
void dfs1(int x) {
sum[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(dep[e[i].v]) continue;
dep[e[i].v]=dep[x]+1;dfs1(e[i].v);sum[x]+=sum[e[i].v];
if(sum[e[i].v]>sum[son[x]]) son[x]=e[i].v;
}
}
inline void add(int x,int v) {
for(re int i=x;i<=sz;i+=lb(i)) d[i]+=v;
}
inline int ask(int x) {
int now=0;
for(re int i=x;i;i-=lb(i)) now+=d[i];
return now;
}
void calc(int x,int o) {
add(pos[x],o);
for(re int i=head[x];i;i=e[i].nxt)
if(dep[e[i].v]>dep[x]&&S!=e[i].v) calc(e[i].v,o);
}
void dsu(int x,int k) {
for(re int i=head[x];i;i=e[i].nxt)
if(dep[e[i].v]>dep[x]&&son[x]!=e[i].v) dsu(e[i].v,0);
if(son[x]) dsu(son[x],1);
S=son[x],calc(x,1),S=0;
for(re int i=1;i<=m;i++) {
int g=ask(find(mx[x]+q[i]));
Ans[i]=max(Ans[i],g);
}
if(!k) calc(x,-1);
}
int main() {
n=read();
for(re int x,y,w,i=1;i<n;++i)
x=read(),y=read(),w=read(),add(x,y,w),add(y,x,w);
m=read();for(re int i=1;i<=m;i++) scanf("%lld",&q[i]);
dfs(1,0);rt=1;
for(re int i=2;i<=n;i++) if(pre[i]>pre[rt]) rt=i;
pre[rt]=0;dfs(rt,0);Rt=1;
for(re int i=1;i<=n;i++) mx[i]=pre[i];
for(re int i=2;i<=n;i++) if(pre[i]>pre[Rt]) Rt=i;
pre[Rt]=0;dfs(Rt,0);
for(re int i=1;i<=n;i++) mx[i]=max(mx[i],pre[i]);
rt=1;for(re int i=2;i<=n;i++) if(mx[i]<mx[rt]) rt=i;
dep[rt]=1;dfs1(rt);
for(re int i=1;i<=n;i++) c[i]=mx[i];
std::sort(c+1,c+n+1);sz=std::unique(c+1,c+n+1)-c-1;
for(re int i=1;i<=n;i++) pos[i]=find(mx[i]);
dsu(rt,1);for(re int i=1;i<=m;i++) printf("%d\n",Ans[i]);
return 0;
}
【CF516D】Drazil and Morning Exercise的更多相关文章
- 「CF516D」 Drazil and Morning Exercise
「CF516D」 Drazil and Morning Exercise 传送门 这个 \(f_i\) 显然可以通过树形 \(\texttt{DP}\) 直接求. 然后看到这种差值问题感觉就可以二分转 ...
- 【Cf #292 D】Drazil and Morning Exercise(树的直径,树上差分)
有一个经典的问题存在于这个子问题里,就是求出每个点到其他点的最远距离. 这个问题和树的直径有很大的关系,因为事实上距离每个点最远的点一定是直径的两个端点.所以我们可以很容易地进行$3$遍$Dfs$就可 ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
- 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 1 线性回归
作业说明 Exercise 1,Week 2,使用Octave实现线性回归模型.数据集 ex1data1.txt ,ex1data2.txt 单变量线性回归必须实现,实现代价函数计算Computin ...
- 【codeforces 515D】Drazil and Tiles
[题目链接]:http://codeforces.com/contest/515/problem/D [题意] 给你一个n*m的格子; 然后让你用1*2的长方形去填格子的空缺; 如果有填满的方案且方案 ...
- 【codeforces 515C】Drazil and Factorial
[题目链接]:http://codeforces.com/contest/515/problem/C [题意] 定义f(n)=n这个数各个位置上的数的阶乘的乘积; 给你a; 让你另外求一个不含0和1的 ...
- 【codeforces 515B】Drazil and His Happy Friends
[题目链接]:http://codeforces.com/contest/515/problem/B [题意] 第i天选择第i%n个男生,第i%m个女生,让他们一起去吃饭; 只要这一对中有一个人是开心 ...
- 【codeforces 515A】Drazil and Date
[题目链接]:http://codeforces.com/contest/515/problem/A [题意] 每次只能走到相邻的四个格子中的一个; 告诉你最后走到了(a,b)走了多少步->s ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
随机推荐
- CSS Sprite初探之原理、使用
CSS Sprite简介: 利用CSS Sprites能很好地减少了网页的http请求次数,从而大大的提高了页面的性能,节省时间和带宽.CSS Sprites在国内很多人叫css精灵, 是一种网页图片 ...
- 42-Ubuntu-用户管理-07-修改权限命令介绍
修改文件权限 序号 命令 作用 01 chown 修改文件/目录拥有者 02 chgrp 修改文件/目录所在主组 03 chmod 修改文件/目录权限 chmod chown chgrp ...
- css3 一个六边形 和 放大旋转动画DEMO演示
<!DOCTYPE html> <html> <head> <meta charset="gb2312"> <title> ...
- udp - IPv4 上面的 UDP 协议.
SYNOPSIS (总览) #include <sys/socket.h> #include <netinet/in.h> udp_socket = socket(PF_INE ...
- swiper-animate
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- SpringBoot 之 Mybatis 逆向工程
今天给大家介绍在 spring- boot 项目中如何使用 maven 插件逆向工程生成 Mybatis 代码. pom.xml 添加依赖和插件 <dependency> <grou ...
- 【BZOJ2938】【luoguP2444】病毒
description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码 ...
- python数据读取路径为啥要用双反斜杠?
Window下python读取数据路径可以有三种表示方式: (1)'c:\\a.txt' ——>转义的方式.表示这里\\是一个普通\字符,不容易出错(2)r'c:\a.txt' ——>声明 ...
- ArrayList 详解
基本介绍 ArrayList: 支持null元素.有顺序.元素可以重复. 可以动态增长和缩减的索引序列,基于数组实现的List类(查询效率高,而在插入删除性能下降很多(需要移动数组元素)). 底层的数 ...
- 依赖背包优化——hdu1561
傻逼依赖背包的优化 #include<bits/stdc++.h> using namespace std; #define N 205 ]; int head[N],tot,n,m,a[ ...