tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息、警告、报错等输出信息。

使用方法:

import os
import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}

TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息

TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息

TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息

TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息

测试代码:

import tensorflow as tf
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2 with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
print sess.run(sumV12)

TF_CPP_MIN_LOG_LEVEL 为 0 的输出:

2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.911260: I tensorflow/core/common_runtime/direct_session.cc:300] Device mapping:
2018-04-21 14:59:09.911816: I tensorflow/core/common_runtime/simple_placer.cc:872] add: (Add)/job:localhost/replica:0/task:0/cpu:0
2018-04-21 14:59:09.911835: I tensorflow/core/common_runtime/simple_placer.cc:872] v2: (Const)/job:localhost/replica:0/task:0/cpu:0
2018-04-21 14:59:09.911841: I tensorflow/core/common_runtime/simple_placer.cc:872] v1: (Const)/job:localhost/replica:0/task:0/cpu:0 Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

值为0也是默认的输出,分为三部分,一个是警告信息说没有优化加速,二是通知信息告知操作所用的设备,三是程序中代码指定要输出的结果信息

TF_CPP_MIN_LOG_LEVEL 为 1 的输出,没有通知信息了:

2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

TF_CPP_MIN_LOG_LEVEL 为 2和3 的输出,设置为2就没有警告信息了,设置为3警告和报错信息(如果有)就都没有了:

Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

tensorflow中屏蔽输出的log信息方法的更多相关文章

  1. uboot向linux传递输出任何log信息的方法

    答案:在bootargs中加入loglevel=8即可(在进入linux的过程中会输出任何log信息)

  2. 【翻译自mos文章】在Oracle GoldenGate中循环使用ggserr.log的方法

    在OGG中循环使用ggserr.log的方法: 參考原文: OGG How Do I Recycle The "ggserr.log" File? (Doc ID 967932.1 ...

  3. TensorFlow中屏蔽warning的方法

    问题 使用sudo pip3 install tensorflow安装完CPU版tensorflow后,运行简单的测试程序,出现如下警告: I tensorflow/core/platform/cpu ...

  4. python中精确输出JSON浮点数的方法

    有时需要在JSON中使用浮点数,比如价格.坐标等信息.但python中的浮点数相当不准确, 例如下面的代码: 复制代码代码如下: #!/usr/bin/env python import json a ...

  5. python3输出指定log信息

    问题背景: win10 python xxx.py > c:test.txt 上面这句只能把信息输出到test.txt,但是控制台看不到信息 ########################## ...

  6. 如何使用1行代码让你的C++程序控制台输出彩色log信息

    本文首发于个人博客https://kezunlin.me/post/a201e11b/,欢迎阅读最新内容! colorwheel for colored print and trace for cpp ...

  7. log4j.properties配置与将异常输出到Log日志文件实例

    将异常输出到 log日志文件 实际项目中的使用: <dependencies> <dependency> <groupId>org.slf4j</groupI ...

  8. log4j中Spring控制台输出Debug级信息过多解决方法

    log4j中Spring控制台输出Debug级信息过多解决方法 >>>>>>>>>>>>>>>>> ...

  9. Android开发过程中在sh,py,mk文件中添加log信息的方法

    Android开发过程中在sh,py,mk文件中添加log信息的方法 在sh文件中: echo "this is a log info" + $info 在py文件中: print ...

随机推荐

  1. Python定位SVG元素

    svgelementXpath = "//div[12]/*[name()='svg']/*[name()='g']/*[name()='g'][2]/*[name()='g'][1]/*[ ...

  2. C++数组引用

    C++数组引用 一.数组引用 C++数组的引用:引用即别名这样比指针传地址方便多了 形参中的(&a)[10]可以就看做a数组的别名,肯定要指定数组大小,如果没有后面的数组大小,天知道是变量还是 ...

  3. 加密算法(DES,AES,RSA,MD5,SHA1,Base64)比较和项目应用

    加密技术通常分为两大类:"对称式"和"非对称式". 对称性加密算法:对称式加密就是加密和解密使用同一个密钥.信息接收双方都需事先知道密匙和加解密算法且其密匙是相 ...

  4. C++中的赋值运算符重载函数(operator=)

    MyStr& operator =(const MyStr& str)//赋值运算符 { cout << "operator =" << e ...

  5. nyoj306 二分+DFS

    走迷宫 时间限制:1000 ms  |  内存限制:65535 KB 难度:5   描述 Dr.Kong设计的机器人卡多非常爱玩,它常常偷偷跑出实验室,在某个游乐场玩之不疲.这天卡多又跑出来了,在SJ ...

  6. ASP.NET的内置对象 —— Request 对象

    Request 对象最大的用途在于提交表单信息. (可获取页面间传递的值.客户端的 IP 地址等) 3.2.2 获取页面间传送的值 获取页面传送参数值是 Request 对象最广泛的应用之一. ASP ...

  7. OAF开发中一些LOV相关技巧 (转)

    原文地址:OAF开发中一些LOV相关技巧 在OAF开发中,LOV的使用频率是很高的,它由两部分构成一是页面上的LOV输入框(如OAMESSageLovInputBean),二是弹出的LOV模式窗口(O ...

  8. node -- hapi 学习

    node learning 学习node,是为了后续项目可以正常开展,现在写个项目,若不是连接后台,请求数据,一切都不叫着项目了.正好借助掘金的小册,来推进学习 学习资料 YouTube 1 掘金 h ...

  9. Cattle学习笔记

    Cattle学习笔记  

  10. BZOJ1652 [Usaco2006 Feb]Treats for the Cows

    蒟蒻许久没做题了,然后连动规方程都写不出了. 参照iwtwiioi大神,这样表示区间貌似更方便. 令f[i, j]表示i到j还没卖出去,则 f[i, j] = max(f[i + 1, j] + v[ ...