Intersection

http://poj.org/problem?id=1410

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17591   Accepted: 4516

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1)

 
Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

判断线是否在矩形内或与矩形的边相交

注意共线但是不相交的情况

Check为判断线段是否相交

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const double eps=1e-;
const double INF=1e20;
const double PI=acos(-1.0);
const int maxp=;
int sgn(double x){
if(fabs(x)<eps) return ;
if(x<) return -;
else return ;
}
inline double sqr(double x){return x*x;}
struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x;
y=_y;
}
void input(){
scanf("%lf %lf",&x,&y);
}
void output(){
printf("%.2f %.2f\n",x,y);
}
bool operator == (const Point &b)const{
return sgn(x-b.x) == && sgn(y-b.y)== ;
}
bool operator < (const Point &b)const{
return sgn(x-b.x)==?sgn(y-b.y)<:x<b.x;
}
Point operator - (const Point &b)const{
return Point(x-b.x,y-b.y);
}
//叉积
double operator ^ (const Point &b)const{
return x*b.y-y*b.x;
}
//点积
double operator * (const Point &b)const{
return x*b.x+y*b.y;
}
//返回长度
double len(){
return hypot(x,y);
}
//返回长度的平方
double len2(){
return x*x+y*y;
}
//返回两点的距离
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator + (const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator * (const double &k)const{
return Point(x*k,y*k);
}
Point operator / (const double &k)const{
return Point(x/k,y/k);
} //计算pa和pb的夹角
//就是求这个点看a,b所成的夹角
///LightOJ1202
double rad(Point a,Point b){
Point p=*this;
return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
}
//化为长度为r的向量
Point trunc(double r){
double l=len();
if(!sgn(l)) return *this;
r/=l;
return Point(x*r,y*r);
}
//逆时针转90度
Point rotleft(){
return Point(-y,x);
}
//顺时针转90度
Point rotright(){
return Point(y,-x);
}
//绕着p点逆时针旋转angle
Point rotate(Point p,double angle){
Point v=(*this) -p;
double c=cos(angle),s=sin(angle);
return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s;
e=_e;
}
bool operator==(Line v){
return (s==v.s)&&(e==v.e);
}
//根据一个点和倾斜角angle确定直线,0<=angle<pi
Line(Point p,double angle){
s=p;
if(sgn(angle-PI/)==){
e=(s+Point(,));
}
else{
e=(s+Point(,tan(angle)));
}
}
//ax+by+c=0;
Line(double a,double b,double c){
if(sgn(a)==){
s=Point(,-c/b);
e=Point(,-c/b);
}
else if(sgn(b)==){
s=Point(-c/a,);
e=Point(-c/a,);
}
else{
s=Point(,-c/b);
e=Point(,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e<s) swap(s,e);
}
//求线段长度
double length(){
return s.distance(e);
}
//返回直线倾斜角 0<=angle<pi
double angle(){
double k=atan2(e.y-s.y,e.x-s.x);
if(sgn(k)<) k+=PI;
if(sgn(k-PI)==) k-=PI;
return k;
}
//点和直线的关系
//1 在左侧
//2 在右侧
//3 在直线上
int relation(Point p){
int c=sgn((p-s)^(e-s));
if(c<) return ;
else if(c>) return ;
else return ;
}
//点在线段上的判断
bool pointonseg(Point p){
return sgn((p-s)^(e-s))==&&sgn((p-s)*(p-e))<=;
}
//两向量平行(对应直线平行或重合)
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s))==;
}
//两线段相交判断
//2 规范相交
//1 非规范相交
//0 不相交
int segcrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
int d3=sgn((v.e-v.s)^(s-v.s));
int d4=sgn((v.e-v.s)^(e-v.s));
if((d1^d2)==-&&(d3^d4)==-) return ;
return (d1==&&sgn((v.s-s)*(v.s-e))<=||
d2==&&sgn((v.e-s)*(v.e-e))<=||
d3==&&sgn((s-v.s)*(s-v.e))<=||
d4==&&sgn((e-v.s)*(e-v.e))<=);
}
//直线和线段相交判断
//-*this line -v seg
//2 规范相交
//1 非规范相交
//0 不相交
int linecrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
if((d1^d2)==-) return ;
return (d1==||d2==);
}
//两直线关系
//0 平行
//1 重合
//2 相交
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==;
return ;
}
//求两直线的交点
//要保证两直线不平行或重合
Point crosspoint(Line v){
double a1=(v.e-v.s)^(s-v.s);
double a2=(v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<||sgn((p-e)*(s-e))<)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//返回线段到线段的距离
//前提是两线段不相交,相交距离就是0了
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
//返回点P在直线上的投影
Point lineprog(Point p){
return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2()));
}
//返回点P关于直线的对称点
Point symmetrypoint(Point p){
Point q=lineprog(p);
return Point(*q.x-p.x,*q.y-p.y);
}
}; Line L[];
int book[];
int n; bool Check(Line a,Line b){
if(sgn((a.s-a.e)^(b.s-a.e))*sgn((a.s-a.e)^(b.e-a.e))>) return false;
if(sgn((b.s-b.e)^(a.s-b.e))*sgn((b.s-b.e)^(a.e-b.e))>) return false;
if(sgn(max(a.s.x,a.e.x)-min(b.s.x,b.e.x))>=&&sgn(max(b.s.x,b.e.x)-min(a.s.x,a.e.x))>=
&&sgn(max(a.s.y,a.e.y)-min(b.s.y,b.e.y))>=&&sgn(max(b.s.y,b.e.y)-min(a.s.y,a.e.y))>=)
return true;
else return false;
} int main(){
int T;
scanf("%d",&T);
while(T--){
Line seg,L[];
double x1,y1,x2,y2,x11,y11,x22,y22;
scanf("%lf %lf %lf %lf",&seg.s.x,&seg.s.y,&seg.e.x,&seg.e.y);
scanf("%lf %lf %lf %lf",&x11,&y11,&x22,&y22);
x1=min(x11,x22);
x2=max(x11,x22);
y1=min(y11,y22);
y2=max(y11,y22);
//上下左右
L[].s.x=x1,L[].s.y=y1,L[].e.x=x2,L[].e.y=y1;
L[].s.x=x2,L[].s.y=y2,L[].e.x=x1,L[].e.y=y2;
L[].s.x=x1,L[].s.y=y2,L[].e.x=x1,L[].e.y=y1;
L[].s.x=x2,L[].s.y=y1,L[].e.x=x2,L[].e.y=y2;
int flag=;
for(int i=;i<=;i++){
if(Check(seg,L[i])){
flag=;
}
}
if(max(seg.s.x,seg.e.x)<=x2&&max(seg.s.y,seg.e.y)<=y2&&min(seg.s.x,seg.e.x)>=x1&&min(seg.s.y,seg.e.y)>=y1){
flag=;
}
if(flag) puts("T");
else puts("F");
}
return ;
}

Intersection(Check)的更多相关文章

  1. 括弧匹配检验(check)

    /*题目:括弧匹配检验 检验给定表达式中括弧是否正确匹配 (两种括弧“( ) ”“[]" ,正确输出OK,错误则输出wrong. 2016年8月8日07:24:58 作者:冰樱梦 */ # ...

  2. Intersection(poj)

    Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13140   Accepted: 3424 Des ...

  3. HDU 4873 ZCC Loves Intersection(可能性)

    HDU 4873 ZCC Loves Intersection pid=4873" target="_blank" style="">题目链接 ...

  4. POJ 1410 Intersection(计算几何)

    题目大意:题目意思很简单,就是说有一个矩阵是实心的,给出一条线段,问线段和矩阵是否相交解题思路:用到了线段与线段是否交叉,然后再判断线段是否在矩阵里面,这里要注意的是,他给出的矩阵的坐标明显不是左上和 ...

  5. C. Maximal Intersection(STL)

    这道题,关键在于怎么求多个区间的交集,使用multiset就可以 分别将 r , l 存在不同的mutiset中. 然后,我们来看一下 是不是 交集的 l 是最大的, 交集的 r 是最小的 #incl ...

  6. elementUI tree组件获取当前选择所有选中(check)和半选中(indeterminate)的节点

    网上查了半天,一大堆都说要改源码的,最后发现有方法不用改源码的 获取方法如下 this.$refs.tree.getCheckedKeys().concat(this.$refs.tree.getHa ...

  7. 在电脑主机(MainFrame)中只需要按下主机的开机按钮(on()),即可调用其它硬件设备和软件的启动方法,如内存(Memory)的自检(check())、CPU的运行(run())、硬盘(Hard

    欢迎大家加入我的社区:http://t.csdn.cn/Q52km 社区中不定时发红包 文章目录 1.UML类图 2.源码 3.优缺点 1.UML类图 2.源码 package com.zheng; ...

  8. SQL总结(四)编辑类

    SQL总结(四)编辑类 应有尽有 1.数据库 创建数据库语法: CREATE DATABASE database_name 1)创建测试库 CREATE DATABASE TestDB 2)使用库 U ...

  9. “菜单”(menubar)和“工具栏”(toolbars)

    "菜单"(menubar)和"工具栏"(toolbars) "菜单" (menubar)和"工具栏"(toolbars) ...

随机推荐

  1. R语言学习——欧拉计划(11)Largest product in a grid

    Problem 11 In the 20×20 grid below, four numbers along a diagonal line have been marked in red. 08 0 ...

  2. 1001 A+B Format (20 分)

    1001 A+B Format (20 分) Calculate a+b and output the sum in standard format -- that is, the digits mu ...

  3. 技巧:利用putty通过win7访问ubuntu

    .用apt-get直接安装SSHD服务所需相关软件包: sudo apt-get install openssh-server .开启服务: sudo /etc/init.d/sshd start p ...

  4. Python 实现双向链表(图解)

    原文:https://blog.csdn.net/qq490691606/article/details/49948263 git 路径 https://github.com/wangpanjun/d ...

  5. HTML|CSS之布局相关总结

    知识内容: 1.浮动相关 2.display属性 3.居中显示 4.盒模型和box-sizing 5.position属性 6.响应式设计 7.flex布局 8.其他 参考:http://zh.lea ...

  6. angularjs探秘<一>认识angularjs

    首先聊聊angularjs是啥. 首先AngularJS 是一个 JavaScript 框架.(PS:其实就是外部引用的js文件) 所以AngularJS的使用依然是外部引用js文件. 附上引用地址 ...

  7. 图片水平垂直居中(兼容IE6,IE7,firefox,opera,safari,其中图片可以是任何块元素)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. OpenACC 《大规模并行处理器编程实战》教材讲解

    ▶ <大规模并行处理器编程实战>第15章,关于OpenACC 的部分,散点 ● OpenACC 中,主机存储器和设备存储器是分开处理的,程序员只要制定要传输的存储器对象即可,编译器会自动生 ...

  9. LINUX漏洞-安全防护--防火墙相关

    漏洞扫描 https://blog.csdn.net/e_Inch_Photo/article/details/79072360 基本安全防范: https://blog.csdn.net/holmo ...

  10. leetcode258

    public class Solution { public int AddDigits(int num) { var str = num.ToString(); ; foreach (var c i ...