Chocolate

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 9279 Accepted: 2417 Special Judge

Description

In 2100, ACM chocolate will be one of the favorite foods in the world.

“Green, orange, brown, red…”, colorful sugar-coated shell maybe is the most attractive feature of ACM chocolate. How many colors have you ever seen? Nowadays, it’s said that the ACM chooses from a palette of twenty-four colors to paint their delicious candy bits.

One day, Sandy played a game on a big package of ACM chocolates which contains five colors (green, orange, brown, red and yellow). Each time he took one chocolate from the package and placed it on the table. If there were two chocolates of the same color on the table, he ate both of them. He found a quite interesting thing that in most of the time there were always 2 or 3 chocolates on the table.

Now, here comes the problem, if there are C colors of ACM chocolates in the package (colors are distributed evenly), after N chocolates are taken from the package, what’s the probability that there is exactly M chocolates on the table? Would you please write a program to figure it out?

Input

The input file for this problem contains several test cases, one per line.

For each case, there are three non-negative integers: C (C <= 100), N and M (N, M <= 1000000).

The input is terminated by a line containing a single zero.

Output

The output should be one real number per line, shows the probability for each case, round to three decimal places.

Sample Input

5 100 2

0

Sample Output

0.625

题意:就是在一堆巧克力中选取n个,每当有两个颜色一样的巧克力就把他们吃了,问,桌面上剩下的巧克力是m个的概率。这是一道概率DP题目。状态转移方程:

dp[i][j]=dp[i-1][j-1](c-(j-1))/(c*1.0)+dp[i-1][j+1](j+1)/(c*1.0);

此题注意,数据量相当大,有两个节省大量时间的减值,一个是若m和n同奇或同偶的,则概率为0

n大于1000的时候,

if(n>1000)

{

n=1000+n%2;

}

似乎用到统计学的知识,反正大于1000,之后的数据量影响不大,相当于1000或者1001;

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h> using namespace std;
double dp[1010][105];
int c,n,m;
int main()
{
while(scanf("%d",&c)!=EOF)
{ if(c==0)
break;
scanf("%d%d",&n,&m);
if(m>c||m>n||((n%2)!=(m%2)))
{
printf("0.000\n");
}
else
{
if(n>1000)
{
n=1000+n%2;
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
dp[1][0]=0;
for(int i=1;i<=n;i++)
{
dp[i][0]=dp[i-1][1]*(1)/(c*1.0);
dp[i][c]=dp[i-1][c-1]*(c-(c-1))/(c*1.0);
for(int j=1;j<c;j++)
{
dp[i][j]=dp[i-1][j-1]*(c-(j-1))/(c*1.0)+dp[i-1][j+1]*(j+1)/(c*1.0); }
}
printf("%.3lf\n",dp[n][m]); }
}
return 0;

POJ-1322 Chocolate(概率DP)的更多相关文章

  1. poj 1322 Chocolate (概率dp)

    ///有c种不同颜色的巧克力.一个个的取.当发现有同样的颜色的就吃掉.去了n个后.到最后还剩m个的概率 ///dp[i][j]表示取了i个还剩j个的概率 ///当m+n为奇时,概率为0 # inclu ...

  2. POJ 3156 - Interconnect (概率DP+hash)

    题意:给一个图,有些点之间已经连边,现在给每对点之间加边的概率是相同的,问使得整个图连通,加边条数的期望是多少. 此题可以用概率DP+并查集+hash来做. 用dp(i,j,k...)表示当前的每个联 ...

  3. POJ 1322 Chocolate

    Chocolate Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8245   Accepted: 2186   Speci ...

  4. POJ 3071 Football(概率DP)

    题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...

  5. POJ 1322 Chocolate(母函数)

    题目链接:http://poj.org/problem?id=1322 题意: 思路: double C[N][N]; void init() { C[0][0]=1; int i,j; for(i= ...

  6. Scout YYF I POJ - 3744(概率dp)

    Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  7. POJ - 2151 (概率dp)

    题意:有T个队伍,有M道题,要求每个队至少有一道题,并且有队伍至少过N道题的概率. 这个题解主要讲一下,后面的,至少有一道题解决和至少一道题至N-1道题解决,到底怎么算的,其实,很简单,就是母函数. ...

  8. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  9. POJ 1202 Family 概率,DP,高精 难度:2

    http://poj.org/problem?id=1202 难度集中在输出格式上,因为输出格式所以是高精度 递推式: 血缘肯定只有从双亲传到儿子的,所以,设f,m为双亲,son为儿子,p[i][j] ...

  10. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

随机推荐

  1. Symbol.iterator的理解

    https://blog.csdn.net/margin_0px/article/details/82971545

  2. 8 -- 深入使用Spring -- 4...1 为什么需要AOP

    8.4.1 为什么需要AOP AOP专门用于处理系统中分布于各种模块(不同方法)中的交叉关注点的问题,在Java EE应用中,常常通过AOP来处理一些具有横切性质的系统级服务,如事务管理.安全检查.缓 ...

  3. 8 -- 深入使用Spring -- 0...

    要点梗概: 利用后处理器扩展Spring容器 Bean后处理器和容器后处理器 Spring3.0 的“零配置” 支持 Spring的资源访问策略 在ApplicationContext中使用资源 AO ...

  4. docker in centos error

    centos 7 Docker 启动了一个web服务 但是启动时 报 WARNING: IPv4 forwarding is disabled. Networking will not work. 网 ...

  5. 转载linux性能调优工具

    Linux 大牛,Netflix 高级性能架构师 Brendan Gregg 更新 Linux 性能调优工具,各种资源应有尽有,大量干货,强烈建议收藏.

  6. 3. Oracle数据库逻辑备份与恢复

    一. Oracle逻辑备份介绍 Oracle逻辑备份的核心就是复制数据:Oracle提供的逻辑备份与恢复的命令有exp/imp,expdp/impdp.当然像表级复制(create table tab ...

  7. C语言EOF是什么?

    C语言 EOF是什么? Linux中,在新的一行的开头,按下Ctrl-D,就代表EOF(如果在一行的中间按下Ctrl-D,则表示输出"标准输入"的缓存区,所以这时必须按两次Ctrl ...

  8. Matlab练习——矩阵和数组的操作

    题目来自:<战胜MATLAB必做练习50道> 题目有更改,改成了我想写的样子. 1. 创建一个3×3矩阵,并将其扩充为4×5矩阵 clear; clc; mat1 = ones(,) ma ...

  9. iptables常用规则

    删除现有规则 iptables -F (OR) iptables --flush 设置默认链策略 iptables的filter表中有三种链:INPUT, FORWARD和OUTPUT.默认的链策略是 ...

  10. EPON ONU软件升级的若干优化方案

    1 说明 目前EPON ONU软件升级主要有IP方式(如SNMP/TR069)和TFTP+OAM两种.前者需占用大量IP地址,且配置ONU的IP地址需要手工操作,给业务开通和系统维护带来较大不便:后者 ...