Chocolate

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 9279 Accepted: 2417 Special Judge

Description

In 2100, ACM chocolate will be one of the favorite foods in the world.

“Green, orange, brown, red…”, colorful sugar-coated shell maybe is the most attractive feature of ACM chocolate. How many colors have you ever seen? Nowadays, it’s said that the ACM chooses from a palette of twenty-four colors to paint their delicious candy bits.

One day, Sandy played a game on a big package of ACM chocolates which contains five colors (green, orange, brown, red and yellow). Each time he took one chocolate from the package and placed it on the table. If there were two chocolates of the same color on the table, he ate both of them. He found a quite interesting thing that in most of the time there were always 2 or 3 chocolates on the table.

Now, here comes the problem, if there are C colors of ACM chocolates in the package (colors are distributed evenly), after N chocolates are taken from the package, what’s the probability that there is exactly M chocolates on the table? Would you please write a program to figure it out?

Input

The input file for this problem contains several test cases, one per line.

For each case, there are three non-negative integers: C (C <= 100), N and M (N, M <= 1000000).

The input is terminated by a line containing a single zero.

Output

The output should be one real number per line, shows the probability for each case, round to three decimal places.

Sample Input

5 100 2

0

Sample Output

0.625

题意:就是在一堆巧克力中选取n个,每当有两个颜色一样的巧克力就把他们吃了,问,桌面上剩下的巧克力是m个的概率。这是一道概率DP题目。状态转移方程:

dp[i][j]=dp[i-1][j-1](c-(j-1))/(c*1.0)+dp[i-1][j+1](j+1)/(c*1.0);

此题注意,数据量相当大,有两个节省大量时间的减值,一个是若m和n同奇或同偶的,则概率为0

n大于1000的时候,

if(n>1000)

{

n=1000+n%2;

}

似乎用到统计学的知识,反正大于1000,之后的数据量影响不大,相当于1000或者1001;

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h> using namespace std;
double dp[1010][105];
int c,n,m;
int main()
{
while(scanf("%d",&c)!=EOF)
{ if(c==0)
break;
scanf("%d%d",&n,&m);
if(m>c||m>n||((n%2)!=(m%2)))
{
printf("0.000\n");
}
else
{
if(n>1000)
{
n=1000+n%2;
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
dp[1][0]=0;
for(int i=1;i<=n;i++)
{
dp[i][0]=dp[i-1][1]*(1)/(c*1.0);
dp[i][c]=dp[i-1][c-1]*(c-(c-1))/(c*1.0);
for(int j=1;j<c;j++)
{
dp[i][j]=dp[i-1][j-1]*(c-(j-1))/(c*1.0)+dp[i-1][j+1]*(j+1)/(c*1.0); }
}
printf("%.3lf\n",dp[n][m]); }
}
return 0;

POJ-1322 Chocolate(概率DP)的更多相关文章

  1. poj 1322 Chocolate (概率dp)

    ///有c种不同颜色的巧克力.一个个的取.当发现有同样的颜色的就吃掉.去了n个后.到最后还剩m个的概率 ///dp[i][j]表示取了i个还剩j个的概率 ///当m+n为奇时,概率为0 # inclu ...

  2. POJ 3156 - Interconnect (概率DP+hash)

    题意:给一个图,有些点之间已经连边,现在给每对点之间加边的概率是相同的,问使得整个图连通,加边条数的期望是多少. 此题可以用概率DP+并查集+hash来做. 用dp(i,j,k...)表示当前的每个联 ...

  3. POJ 1322 Chocolate

    Chocolate Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8245   Accepted: 2186   Speci ...

  4. POJ 3071 Football(概率DP)

    题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...

  5. POJ 1322 Chocolate(母函数)

    题目链接:http://poj.org/problem?id=1322 题意: 思路: double C[N][N]; void init() { C[0][0]=1; int i,j; for(i= ...

  6. Scout YYF I POJ - 3744(概率dp)

    Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  7. POJ - 2151 (概率dp)

    题意:有T个队伍,有M道题,要求每个队至少有一道题,并且有队伍至少过N道题的概率. 这个题解主要讲一下,后面的,至少有一道题解决和至少一道题至N-1道题解决,到底怎么算的,其实,很简单,就是母函数. ...

  8. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  9. POJ 1202 Family 概率,DP,高精 难度:2

    http://poj.org/problem?id=1202 难度集中在输出格式上,因为输出格式所以是高精度 递推式: 血缘肯定只有从双亲传到儿子的,所以,设f,m为双亲,son为儿子,p[i][j] ...

  10. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

随机推荐

  1. 关于UIGestureRecognizerState

    UIGestureRecognizerState的定义如下 typedef enum { UIGestureRecognizerStatePossible, UIGestureRecognizerSt ...

  2. 使用pull方式解析xml文件示例:

    网上的示例太多,基本类似,个人在此做个简单的总结: 1.首先在工程的asserts目录下建一个book.xml文件: <?xml version="1.0" encoding ...

  3. 【AI】Ubuntu NVIDIA CUDA CUDNN安装配置

    https://blog.csdn.net/qq_33200967/article/details/80689543 https://blog.csdn.net/sinat_29963957/arti ...

  4. apt-get/dpkg常用指令备查

    apt-get install <package> Downloads <package> and all of its dependencies, and installs ...

  5. Onpaint和OnDraw的区别

    (一) OnPaint 和 OnDraw (1)OnPaint是WM_PAINT消息的消息处理函数,在OnPaint中调用OnDraw,一般来说,用户自己的绘图代码应放在OnDraw中. (2)OnP ...

  6. iOS10个实用小技巧(总有你不知道的和你会用到的)

    本文转载至 http://www.jianshu.com/p/a3156826c27c 在开发过程中我们总会遇到各种各样的小问题,有些小问题并不是十分容易解决.在此我就总结一下,我在开发中遇到的各种小 ...

  7. codeforces水题100道 第二十三题 Codeforces Beta Round #77 (Div. 2 Only) A. Football (strings)

    题目链接:http://www.codeforces.com/problemset/problem/96/A题意:判断一个0-1字符串中出现的最长的0字串或者1字串的长度是否大于等于7.C++代码: ...

  8. php基础设计模式 注册树模式、工厂模式、单列模式

    废话不多说了,先给大家介绍注册树模式然后介绍工厂模式最后给大家介绍单列模式,本文写的很详细,一起来学习吧. php注册树模式 什么是注册树模式? 注册树模式当然也叫注册模式,注册器模式.之所以我在这里 ...

  9. 决策树归纳算法之ID3

    学习是一个循序渐进的过程,我们首先来认识一下,什么是决策树.顾名思义,决策树就是拿来对一个事物做决策,作判断.那如何判断呢?凭什么判断呢?都是值得我们去思考的问题. 请看以下两个简单例子: 第一个例子 ...

  10. 删除RHSA文件方法

    DEL /F /A /Q \\?\%1RD /S /Q \\?\%1新建一个批处理文件,包含上面两行代码,然后将要删除的文件拖放进里面就OK!