P1771 方程的解_NOI导刊2010提高(01)

按题意用快速幂把$g(x)$求出来

发现这不就是个组合数入门题吗!

$k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法?

根据插板法,显然答案为$C(g(x)-1,k-1)$

蓝后写个高精度。(我曾经十分天真地认为$ans<=10^{50}$)

这里用压位+结构体重载高精。可以应对$ans<=10^{24*7}$的数据。

注意:存在x,P,$(x^x) \% P!=(x\% P)^{(x\% P)} \% P$

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
using namespace std;
int max(int a,int b){return a>b?a:b;}
const int W=;//压7位
int x,k;
struct bigsum{
int a[],len;
bigsum(){memset(a,,sizeof(a));len=;}
bigsum operator + (const bigsum &tmp) const{
bigsum c; int x=;
c.len=max(len,tmp.len);
for(int i=;i<=c.len;++i){
c.a[i]=a[i]+tmp.a[i]+x;
x=c.a[i]/W;c.a[i]%=W;
}
for(;x;x/=W) c.a[++c.len]=x%W;
return c;
}
void print(){//注意压位高精输出时每一位的前导0
printf("%d",a[len]);
for(int i=len-;i>=;--i){
for(int j=;a[i]*j<W;j*=) putchar();
printf("%d",a[i]);
}
}
}C[][];
int Pow(int x,int y){
int res=;
for(;y;y>>=,x=1ll*x*x%)
if(y&) res=1ll*res*x%;
return res;
}
int main(){
scanf("%d%d",&k,&x); x=Pow(x%,x);
if(!x){puts("");return ;}
for(int i=;i<x;++i)
for(int j=;j<=i;++j){
if(!j||j==i) C[i][j].a[C[i][j].len=]=;
else C[i][j]=C[i-][j]+C[i-][j-];
}//杨辉三角递推
C[x-][k-].print();
return ;
}

P1771 方程的解_NOI导刊2010提高(01)的更多相关文章

  1. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  2. 方程的解_NOI导刊2010提高(01) 组合数

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  3. 方程的解_NOI导刊2010提高

    方程的解 给定x,求\(a_1+a_2+...+a_k=x^x\ mod\ 1000\)的正整数解解的组数,对于100%的数据,k≤100,x≤2^31-1. 解 显然x是可以快速幂得到答案的,而该问 ...

  4. 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告

    P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...

  5. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  6. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

  7. 【洛谷】【堆】P1801 黑匣子_NOI导刊2010提高(06)

    [题目描述:] Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两 ...

  8. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  9. P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

随机推荐

  1. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

  2. 洛谷P2178 品酒大会【后缀数组】【单调栈】

    题目描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加. 在大会的晚餐上,调酒师 Rainb ...

  3. 在选定合适的执行引擎之后,通过敏感字段重写模块改写 SQL 查询,将其中的敏感字段根据隐藏策略(如只显示后四位)进行替换。而敏感字段的隐藏策略存储在 ranger 中,数据管理人员可以在权限管理服务页面设置各种字段的敏感等级,敏感等级会自动映射为 ranger 中的隐藏策略。

    https://mp.weixin.qq.com/s/4G_OvlD_5uYr0o2m-qPW-Q 有赞大数据平台安全建设实践 原创: 有赞技术 有赞coder 昨天

  4. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  5. 配合dedecms内容模型实现后台输入栏目id前端输出文章列表

    为了简化开发的工作量,也方便编辑快速操作,决定将后台进行重新设置.配合dedecms内容模型实现后台输入栏目id前端输出文章列表,这样制作科室专题页也变快了很多.比如,我们添加一个“科室专家栏目id” ...

  6. ubuntu设置目录容量大小

    1:方法如下 sudo dd if=/dev/zero of=/root/disk1.img bs=2M count=10      //          2M*10=20M    zero 是de ...

  7. ubuntu 磁盘分区

    1:查看分区情况:df -h admin@iZwz92c0zpe8t65qe996ckZ:/$ df -h Filesystem Size Used Avail Use% Mounted on ude ...

  8. [py]GIL(全局解释器锁):多线程模式

    在多线程 时同一时刻只允许一个线程来访问CPU,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL 参考 Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务.多个P ...

  9. nltk模块基础操作

     几个基础函数 (1)搜索文本:text.concordance(word) 例如,在text1中搜索词”is”在文本中出现的次数以及上下文的词:text1.concordance("is& ...

  10. node初识——node中的require方法与require.js的区别

    出处:http://blog.csdn.net/u013613428/article/details/51966500 作为一个前端的新手,总是诧异于js的模块载入方式,看到了通过requireJs提 ...