P1771 方程的解_NOI导刊2010提高(01)

按题意用快速幂把$g(x)$求出来

发现这不就是个组合数入门题吗!

$k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法?

根据插板法,显然答案为$C(g(x)-1,k-1)$

蓝后写个高精度。(我曾经十分天真地认为$ans<=10^{50}$)

这里用压位+结构体重载高精。可以应对$ans<=10^{24*7}$的数据。

注意:存在x,P,$(x^x) \% P!=(x\% P)^{(x\% P)} \% P$

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
using namespace std;
int max(int a,int b){return a>b?a:b;}
const int W=;//压7位
int x,k;
struct bigsum{
int a[],len;
bigsum(){memset(a,,sizeof(a));len=;}
bigsum operator + (const bigsum &tmp) const{
bigsum c; int x=;
c.len=max(len,tmp.len);
for(int i=;i<=c.len;++i){
c.a[i]=a[i]+tmp.a[i]+x;
x=c.a[i]/W;c.a[i]%=W;
}
for(;x;x/=W) c.a[++c.len]=x%W;
return c;
}
void print(){//注意压位高精输出时每一位的前导0
printf("%d",a[len]);
for(int i=len-;i>=;--i){
for(int j=;a[i]*j<W;j*=) putchar();
printf("%d",a[i]);
}
}
}C[][];
int Pow(int x,int y){
int res=;
for(;y;y>>=,x=1ll*x*x%)
if(y&) res=1ll*res*x%;
return res;
}
int main(){
scanf("%d%d",&k,&x); x=Pow(x%,x);
if(!x){puts("");return ;}
for(int i=;i<x;++i)
for(int j=;j<=i;++j){
if(!j||j==i) C[i][j].a[C[i][j].len=]=;
else C[i][j]=C[i-][j]+C[i-][j-];
}//杨辉三角递推
C[x-][k-].print();
return ;
}

P1771 方程的解_NOI导刊2010提高(01)的更多相关文章

  1. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  2. 方程的解_NOI导刊2010提高(01) 组合数

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  3. 方程的解_NOI导刊2010提高

    方程的解 给定x,求\(a_1+a_2+...+a_k=x^x\ mod\ 1000\)的正整数解解的组数,对于100%的数据,k≤100,x≤2^31-1. 解 显然x是可以快速幂得到答案的,而该问 ...

  4. 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告

    P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...

  5. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  6. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

  7. 【洛谷】【堆】P1801 黑匣子_NOI导刊2010提高(06)

    [题目描述:] Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两 ...

  8. P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化

    多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...

  9. P1801 黑匣子_NOI导刊2010提高(06)

    P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...

随机推荐

  1. Yii2 使用json 和设置component 中'format' => yii\web\Response::FORMAT_JSON 的区别

    在Yii2中如果设置了 'response' => [  'format' => yii\web\Response::FORMAT_JSON,  'charset' => 'UTF- ...

  2. codeforces 883H - Palindromic Cut - [字符串处理]

    题目链接:http://codeforces.com/problemset/problem/883/H Time limit: 3000 ms Memory limit: 262144 kB Koly ...

  3. package-info.java https://www.intertech.com/Blog/whats-package-info-java-for/

    mybatis-3/src/main/java/org/apache/ibatis/cache/package-info.java What’s package-info.java for? http ...

  4. CGI servlet Applet Scriptlet Scriptlet JSP data layer(数据层),business layer(业务层), presentation layer(表现层)

    https://en.wikipedia.org/wiki/Common_Gateway_Interface In computing, Common Gateway Interface (CGI) ...

  5. lamp docker apache2 supervisor monitor

    sudo docker run -d -p 80:80 -p 3306:3306 -v /data/lampp/supervisormonitor:/app --name mylamp01 tutum ...

  6. HTML_body标签

    常用符号:空格:&nbsp 大于号:&gt 小于号: &lt 块级标签:H标签(加大加粗),P标签(段落间有间距),DIV(白板) 行内标签:SPAN标签(白板) <!- ...

  7. 聊一聊Linux中的工作队列2

    上一篇文章对工作队列原理以及核心数据结构做了简单介绍,本文重点介绍下workqueue的创建以及worker的管理. 一.工作队列的创建(__alloc_workqueue_key) struct w ...

  8. linux报错 find: missing argument to `-exec'

    在linux下使用find命令时,报错:find: missing argument to `-exec' 具体执行命令为: find /u03 -name server.xml -exec grep ...

  9. 1.cassandra的搭建

    参考: https://blog.csdn.net/ch648966459/article/details/51671276

  10. docker学习(3)--Dockfile详解

    转载请注明出处:http://www.cnblogs.com/lighten/p/6900556.html 1.基本说明 Dockfile是一个用于编写docker镜像生成过程的文件,其有特定的语法. ...