优化问题:

其中,

定义:对于一个不等式约束,如果,那么称不等式约束是处起作用的约束。

定义:设满足,设为起作用不等式约束的下标集:

如果向量:是线性无关的,则称是一个正则点。

下面给出某个点是局部极小点的一阶必要条件(即如果是极小点,那么必然满足下列条件),称为KKT条件:

,设的一个正则点和局部极小点,使得以下条件成立:

为拉格朗日乘子向量,为KKT乘子向量。

含有不等式约束的优化问题——KKT条件的更多相关文章

  1. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  2. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  3. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  4. 重温拉格朗日乘子法和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 优化问题及KKT条件

    整理自其他优秀博文及自己理解. 目录 无约束优化 等式约束 不等式约束(KKT条件) 1.无约束优化 无约束优化问题即高数下册中的 “多元函数的极值"  部分. 驻点:所有偏导数皆为0的点: ...

  7. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  8. 拉格朗日乘子法(Lagrange Multiplier)和KKT条件

    拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...

  9. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

随机推荐

  1. Femtocell家庭基站通信截获、伪造任意短信漏洞

    阿里移动安全团队与中国泰尔实验室无线技术部的通信专家们一起,联合对国内运营商某型Femtocell基站进行了安全分析,发现多枚重大漏洞,可导致用户的短信.通话.数据流量被窃听.恶意攻击者可以在免费申领 ...

  2. SEL_CallFuncN,SEL_CallFuncO等的区别

    ocos2d-x中有大量的回调函数的应用,主要有以下几类,看下CCObject.h中的定义 typedef void (CCObject::*SEL_SCHEDULE)(float);// 用来调up ...

  3. IIS7 经典模式和集成模式的区别

    IIS7.0中的Web应用程序有两种配置形式:经典形式和集成形式. 经典形式是为了与之前的版本兼容,运用ISAPI扩展来调用ASP.NET运转库,原先运转于IIS6.0下的Web应用程序迁移到IIS7 ...

  4. WEB接口测试之Jmeter接口测试自动化 (三)

    接口测试与数据驱动 1简介 数据驱动测试,即是分离测试逻辑与测试数据,通过如excel表格的形式来保存测试数据,用测试脚本读取并执行测试的过程. 2 数据驱动与jmeter接口测试 我们已经简单介绍了 ...

  5. 【opencv基础】opencv和dlib库中rectangle类型之间的转换

    前言 最近使用dlib库的同时也会用到opencv,特别是由于对dlib库的画图函数不熟悉,都想着转换到opencv进行show.本文介绍一下两种开源库中rectangle类型之间的转换. 类型说明 ...

  6. 【linux】使用swap文件恢复非正常关闭的文件

    前言 使用vim的时候,文件编辑过程中可能会出现bug,导致非正常关闭.为了保存刚刚修改的内容,需要对文件进行恢复. 操作过程 1.查看目录文件 zrj@zrj-ThinkPad-E470:~/wor ...

  7. 获取APP图片资源

    iOS开发项目-斗鱼直播APP - 网易云课堂 一. 二.导出Assets.car中的图片资源 cartool

  8. Unity 3D的常用快捷键

    Unity中的常用快捷键 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 Windows系统Unity3 ...

  9. Loj 2008 小凸想跑步

    Loj 2008 小凸想跑步 \(S(P,p_0,p_1)<S(P,p_i,p_{i+1})\) 这个约束条件对于 \(P_x,P_y\) 是线性的,即将面积用向量叉积表示,暴力拆开,可得到 \ ...

  10. 【maven】Maven根据Profile读取不同配置环境配置文件

    开发需求:在日常开发中,我们大多都会有开发环境(dev).测试环境(test).生产环境(product),不同环境的参数肯定不一样,我们需要在打包的时候,不同环境打不同当包,如果手动改,一方面效率低 ...