Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路
3 seconds
256 megabytes
standard input
standard output
Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.
Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.
You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.
The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.
Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.
The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.
In the first line print the minimum total weight of the edges of the tree.
In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.
If there are multiple answers, print any of them.
3 3
1 2 1
2 3 1
1 3 2
3
2
1 2
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
4
2 3 4
In the first sample there are two possible shortest path trees:
- with edges 1 – 3 and 2 – 3 (the total weight is 3);
- with edges 1 – 2 and 2 – 3 (the total weight is 2);
And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.
题目链接:点击传送
题意:给你n个点,m条边,让你求u到所有点的都是最短路,并且使得图的总权值最小;
思路:dij+堆优化,在求最短路的时候多存两个pos,跟w,在保证最短路的情况下,使得w更小即可;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=;
struct is
{
int v,next,w,pos;
}edge[N<<];
int head[N],edg;
void init()
{
memset(head,-,sizeof(head));
edg=;
}
void add(int u,int v,int w,int pos)
{
edg++;
edge[edg].v=v;
edge[edg].w=w;
edge[edg].pos=pos;
edge[edg].next=head[u];
head[u]=edg;
}
struct mmp
{
int s,pos,w;
ll dis;
mmp(){}
mmp(int ss,ll d,int p,int ww){s=ss,dis=d;pos=p;w=ww;}
bool operator <(const mmp &b)const
{
if(dis!=b.dis)
return dis>b.dis;
return w>b.w;
}
};
ll ans[N],sum;
int vis[N];
priority_queue<mmp>q;
vector<int>out;
void dij(int s)
{
ans[s]=;
q.push(mmp(s,0LL,,));
while(!q.empty())
{
mmp now = q.top();
q.pop();
if(vis[now.s])continue;
sum+=now.w;
out.push_back(now.pos);
vis[now.s]=;
for(int i = head[now.s]; i !=-; i = edge[i].next)
{
int v=edge[i].v;
ll w=edge[i].w;
int p=edge[i].pos;
if(ans[v] >=ans[now.s] + w)
{
q.push(mmp(v,ans[now.s]+w,p,w));
ans[v]=ans[now.s]+w;
}
}
}
}
int main()
{
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,i);
add(v,u,w,i);
}
int s;
scanf("%d",&s);
for(int i=;i<=n;i++)
ans[i]=INF;
dij(s);
printf("%lld\n",sum);
sort(out.begin(),out.end());
for(int i=;i<out.size();i++)
printf("%d ",out[i]);
return ;
}
3 seconds
256 megabytes
standard input
standard output
Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.
Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.
You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.
The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.
Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.
The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.
In the first line print the minimum total weight of the edges of the tree.
In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.
If there are multiple answers, print any of them.
3 3
1 2 1
2 3 1
1 3 2
3
2
1 2
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
4
2 3 4
In the first sample there are two possible shortest path trees:
- with edges 1 – 3 and 2 – 3 (the total weight is 3);
- with edges 1 – 2 and 2 – 3 (the total weight is 2);
And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.
Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路的更多相关文章
- Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心
题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)
E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- 水题 Codeforces Round #303 (Div. 2) D. Queue
题目传送门 /* 比C还水... */ #include <cstdio> #include <algorithm> #include <cstring> #inc ...
- DP Codeforces Round #303 (Div. 2) C. Woodcutters
题目传送门 /* 题意:每棵树给出坐标和高度,可以往左右倒,也可以不倒 问最多能砍到多少棵树 DP:dp[i][0/1/2] 表示到了第i棵树时,它倒左或右或不动能倒多少棵树 分情况讨论,若符合就取最 ...
- 贪心 Codeforces Round #303 (Div. 2) B. Equidistant String
题目传送门 /* 题意:找到一个字符串p,使得它和s,t的不同的总个数相同 贪心:假设p与s相同,奇偶变换赋值,当是偶数,则有答案 */ #include <cstdio> #includ ...
- 水题 Codeforces Round #303 (Div. 2) A. Toy Cars
题目传送门 /* 题意:5种情况对应对应第i或j辆车翻了没 水题:其实就看对角线的上半边就可以了,vis判断,可惜WA了一次 3: if both cars turned over during th ...
- Codeforces Round #303 (Div. 2)
A.Toy Cars 题意:给出n辆玩具车两两碰撞的结果,找出没有翻车过的玩具车. 思路:简单题.遍历即可. #include<iostream> #include<cstdio&g ...
- Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)
题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...
- Codeforces Round #303 (Div. 2) D. Queue 傻逼题
C. Woodcutters Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/545/probl ...
随机推荐
- latex中文模板
\documentclass[UTF8,a4paper,10pt, twocolumn]{ctexart} \usepackage[left=2.50cm, right=2.50cm, top=2.5 ...
- [py]django url 参数/reverse和HttpResponseRedirect
参考 需要完成以下任务 - 访问http://127.0.0.1:8000/ 返回"hello maotai"或home.html - 访问http://127.0.0.1:800 ...
- X-Forwarded-For 负载均衡 7 层 HTTP 模式获取来访客户端真实 IP 的方法(IIS/Apache/Nginx/Tomcat)
https://help.aliyun.com/knowledge_detail/13051859.html?pos=1 1.IIS 6 配置方案2.IIS 7 配置方案3.Apache 配置方案4. ...
- selenium WebDriver处理文件下载
下载文件WebDriver 允许我们设置默认的文件下载路径.也就是说文件会自动下载并且存在设置的那个目录中.下面以FireFox 为例执行文件的下载. package com.mypro.jase; ...
- Android下基于线程池的网络访问基础框架
引言 现在的Android开发很多都使用Volley.OkHttp.Retrofit等框架,这些框架固然有优秀的地方(以后会写代码学习分享),但是我们今天介绍一种基于Java线程池的网络访问框架. 实 ...
- 209. Minimum Size Subarray Sum(双指针)
Given an array of n positive integers and a positive integer s, find the minimal length of a contigu ...
- zw版【转发·台湾nvp系列Delphi例程】HALCON HistoToThresh2
zw版[转发·台湾nvp系列Delphi例程]HALCON HistoToThresh2 procedure TForm1.Button1Click(Sender: TObject);var imag ...
- ac1067
这题说的是 有n个点在 圆上等分这个圆,然后 然后计算其中任意三个点能组成的锐角三角形的个数 首先这些点能组成的三角形的个数为 n*(n-1)*(n-2)/6 接下来计算不是锐角三角形的个数 固定任 ...
- 20154312 曾林 Exp4恶意软件分析
写在前面 如果把恶意软件比作罪犯的话,怎么看这次实验? 实验目的:以后能够在茫茫人海中找到罪犯. 实验过程:现在以及抓到了一个罪犯,把他放到茫茫人海里去,看看他和普通人有啥区别.这些区别就是罪犯的特征 ...
- Java SE 基础知识(一)
一.基础知识 1. Java SE : Java Standard Edition Java ME : Java Micro Edition Java EE : Java Enterprise Edi ...