题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。

题目描述

请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。

输入输出格式

输入格式:

n

输出格式:

把第n个斐波那契数列的数分解质因数。

输入输出样例

输入样例#1: 复制

5
输出样例#1: 复制

5=5
输入样例#2: 复制

6
输出样例#2: 复制

8=2*2*2

说明

n<=48

 
 斐波那契+质因数分解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
<<;
int n,answer,s;
struct Node
{
    ][];
    Node(){memset(m,,sizeof(m));}
}mb,ans;
Node operator*(Node a,Node b)
{
    Node c;
    ;i<=;i++)
     ;j<=;j++)
      ;k<=;k++)
       c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
    return c;
}
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    ans.m[][]=ans.m[][]=;
    mb.m[][]=mb.m[][]=mb.m[][]=;
    while(n)
    {
        ) ans=ans*mb;
        mb=mb*mb;n>>=;
    }
    answer=ans.m[][];
    printf("%d=",answer);
    ;i<=answer;i++)
    {
        )
        {
            s++;answer/=i;
            ) printf("*");
            printf("%d",i);
         }
    }
    ;
}

洛谷——P2626 斐波那契数列(升级版)矩阵的更多相关文章

  1. 洛谷——P2626 斐波那契数列(升级版)

    P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...

  2. 洛谷 P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  3. [洛谷P2626]斐波那契数列(升级版)

    题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...

  4. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  5. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  6. 洛谷P1962 斐波那契数列 (矩阵快速幂)

    学了矩阵,练一下手... 1 #include<bits/stdc++.h> 2 typedef long long ll; 3 const ll mod=1e9+7; 4 using n ...

  7. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  8. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  9. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

随机推荐

  1. C11工具类:时间处理

    C++11提供时间管理类,包括三种类型:时间间隔duration,时钟clocks,时间点time point. 1.记录时常的duration 1.1 原型 duration表示一段时间间隔,用来记 ...

  2. 【51NOD-0】1012 最小公倍数LCM

    [算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf( ...

  3. cocos2dx中启用lua脚本

    AppDelegate 的 applicationDidFinishLaunching 方法中加载Lua引擎 bool AppDelegate::applicationDidFinishLaunchi ...

  4. cocos2dx 某缩放的页面 CCTableView最后一个标签无法点中

    有一个二级界面,在ipad4下面放大到1.6倍,直接对最外层的CCLayer缩放的,里面包含有CCTableView.结果运行的时候无法选中到最后一个标签,无论总的标签是2个还是更多,单步调试,发现到 ...

  5. 转一篇sublime必备的一些插件

    Package Control 功能:安装包管理 简介:sublime插件控制台,提供添加.删除.禁用.查找插件等功能 使用:https://sublime.wbond.net/installatio ...

  6. 换行符 \r \n \r\n 在不同系统下的区别

    '\r'是回车,前者使光标到行首,(carriage return)'\n'是换行,后者使光标下移一格,(line feed)\r 是回车,return\n 是换行,newline对于换行这个动作,u ...

  7. Python与RPC -- (转)

    XML-RPC xmlrpc是使用http协议做为传输协议的rpc机制,使用xml文本的方式传输命令和数据. 一个rpc系统,必然包括2个部分: 1)rpc client,用来向rpc server调 ...

  8. Python 关于时间和日期函数使用 -- (转)

    python中关于时间和日期函数有time和datatime   1.获取当前时间的两种方法: import datetime,time now = time.strftime("%Y-%m ...

  9. docker 环境

    1.docker 升级 步骤: docker -v service docker stop yum -y update docker.io

  10. Python自动化运维 - Django(三)CSRF - Cookie&Session

    CSRF跨站请求伪造 CSRF跨站点请求伪造(Cross—Site Request Forgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解:攻击者盗用了你的身份,以你的名义发送恶意请求 ...