洛谷——P2626 斐波那契数列(升级版)矩阵
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
<<;
int n,answer,s;
struct Node
{
][];
Node(){memset(m,,sizeof(m));}
}mb,ans;
Node operator*(Node a,Node b)
{
Node c;
;i<=;i++)
;j<=;j++)
;k<=;k++)
c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
return c;
}
int read()
{
,f=; char ch=getchar();
;ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
int main()
{
n=read();
ans.m[][]=ans.m[][]=;
mb.m[][]=mb.m[][]=mb.m[][]=;
while(n)
{
) ans=ans*mb;
mb=mb*mb;n>>=;
}
answer=ans.m[][];
printf("%d=",answer);
;i<=answer;i++)
{
)
{
s++;answer/=i;
) printf("*");
printf("%d",i);
}
}
;
}
洛谷——P2626 斐波那契数列(升级版)矩阵的更多相关文章
- 洛谷——P2626 斐波那契数列(升级版)
P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- 洛谷P1962 斐波那契数列 (矩阵快速幂)
学了矩阵,练一下手... 1 #include<bits/stdc++.h> 2 typedef long long ll; 3 const ll mod=1e9+7; 4 using n ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
随机推荐
- vijos 1426 背包+hash
背景 北京奥运会开幕了,这是中国人的骄傲和自豪,中国健儿在运动场上已经创造了一个又一个辉煌,super pig也不例外……………… 描述 虽然兴奋剂是奥运会及其他重要比赛的禁药,是禁止服用的.但是运动 ...
- python内置函数lambda、filter、map、reduce
lambda匿名函数 1.lambda只是一个表达式,函数体比def简单多. 2.lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去 3.lambda函数 ...
- python测试rabbitmq简易实例
生产者 import pika #coding=utf8 credentials = pika.PlainCredentials('guest', '密码') connection = pika.Bl ...
- Item 8 覆盖equals时请遵守通用约定
在覆盖equals方法的时候,你必须要遵守它的通用约定,不遵守,写出来的方法,会出现逻辑错误.下面是约定的内容: equals方法实现了等价关系: 自反性.对于任何非null的引用值,x.eq ...
- 【bzoj3387-跨栏训练】线段树+dp
我们可以想到一个dp方程:f[i][0]表示当前在i个栅栏的左端点,f[i][1]表示在右端点. 分两种情况: 第一种:假设现在要更新线段gh的左端点g,而它下来的路径被ef挡住了,那么必定是有ef来 ...
- 20155335俞昆《java程序设计》第十周总结
学号 2016-2017-2 <Java程序设计>第十周学习总结 ## 事实上网络编程,我们可以简单的理解为两台计算机相互通讯数据而已,对于程序员而言,掌握一种编程接口并使用一种编程模型相 ...
- HDU 1203 I NEED A OFFER! (dp)
题目链接 Problem Description Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定 ...
- vue调试工具
在进行vue项目开发的时候,免不了要进行调试,谷歌插件vue-devtools可以帮忙 步骤 步骤一: 到谷歌商店搜索"vue-devtools"下载 步骤二: 在chrome的扩 ...
- bzoj 2730 割点
首先我们知道,对于这张图,我们可以枚举坍塌的是哪个点,对于每个坍塌的点,最多可以将图分成若干个不连通的块,这样每个块我们可能需要一个出口才能满足题目的要求,枚举每个坍塌的点显然是没有意义的,我们只需要 ...
- mysql中的enum型
enum设置后 值只能是给出的值中的其中一个 mysql> create table enum(e enum('1','2','3','4','5','6','7','8','9','10')) ...