【Pyhton 数据分析】通过gensim进行文本相似度分析
环境描述
Python环境:Python 3.6.1
系统版本:windows7 64bit
文件描述
一共有三个文件,分别是:file_01.txt、file_02.txt、file_03.txt
file_01.txt文件内容:
我吃过糖之后,发现我的牙齿真的很疼
file_02.txt文件内容:
牙疼不是病疼起来要人命.
file_03.txt文件内容:
我的肚子不舒服!与此同时,牙疼也让我接近崩溃
文本相似度分析步骤
- 打开并读取文档内容
- 对要进行分析的文档分词
- 格式化文档
- 计算词频(可以过滤词频较小的词)
- 通过语料库建立字典
- 加载要对比的文档
- 将要对比的文档通过doc2bow转化为稀疏向量
- 对稀疏向量进行进一步处理,得到新语料库
- 将新语料库通过tfidfmodel进行处理,得到tfidf
- 通过token2id得到特征数
- 稀疏矩阵相似度,从而建立索引
- 得到相似度结果
实现代码
#-*- coding:utf-8 -*- #导入所需的模块
from gensim import corpora,models,similarities
import jieba
from collections import defaultdict #打开并读取文件
f1 = "D:/reptile/file/file_01.txt"
f2 = "D:/reptile/file/file_02.txt" content1 = open(f1,encoding='UTF-8').read()
content2 = open(f2,encoding='UTF-8').read() #对文档进行分词
data1 = jieba.cut(content1)
data2 = jieba.cut(content2) #整理文档格式,格式为:"词语1 词语2 ... 词语n "(词语之间用空格分隔)
str1 = ""
for item in data1:
str1+=item+" "
#print(str1)
str2 = ""
for item in data2:
str2+=item+" "
#print(str2) #split默认分隔符为空格
str_all = [str1,str2]
text = [[word for word in str3.split()]
for str3 in str_all] #计算词语频率
frequency = defaultdict(int)
for i in text:
for token in i:
frequency[token]+=1
#过滤词频为3的
'''
texts=[[word for word in text if frequency[token]>3]
for text in texts]
'''
#通过语料库建立词典
dictionary = corpora.Dictionary(text)
dictionary.save("D:/reptile/file/dict1.txt") #加载要对比的文档
f3 = "D:/reptile/file/file_03.txt"
content3 = open(f3,encoding='UTF-8').read()
data3 = jieba.cut(content3) str3 = ""
for item in data3:
str3+=item+" "
new_data = str3 #doc2bow将文件变成一个稀疏矩阵
new_vec = dictionary.doc2bow(new_data.split()) #对字典进行docbow处理,得到新的语料库
corpus = [dictionary.doc2bow(j) for j in text] #将corpus语料库持久化到磁盘中,词句可以删除
#corpora.MmCorpus.serialize("D:/reptile/file/New_Yuliaoku.mm",corpus) #将新的语料库通过TfidfModel处理,得到tfidf
tfidf = models.TfidfModel(corpus) #求特征数
featureNum = len(dictionary.token2id.keys()) #SparseMatrixSimilarity 稀疏矩阵相似度
index = similarities.SparseMatrixSimilarity(tfidf[corpus],num_features=featureNum) #得到结果
sim = index[tfidf[new_vec]] #打印结果
print(sim)
运行结果
[ 0.58554006 0.15430336]
该结果说明:file_03文件与file_02的相似度为0.15430336,与file_01的相似度为0.58554006
【Pyhton 数据分析】通过gensim进行文本相似度分析的更多相关文章
- python 用gensim进行文本相似度分析
http://blog.csdn.net/chencheng126/article/details/50070021 参考于这个博主的博文. 原理 1.文本相似度计算的需求始于搜索引擎. 搜索引擎需要 ...
- 文本相似度分析(基于jieba和gensim)
基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...
- 转:Python 文本挖掘:使用gensim进行文本相似度计算
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理 ...
- 文本离散表示(三):TF-IDF结合n-gram进行关键词提取和文本相似度分析
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n ...
- TF-IDF 文本相似度分析
前阵子做了一些IT opreation analysis的research,从产线上取了一些J2EE server运行状态的数据(CPU,Menory...),打算通过训练JVM的数据来建立分类模型, ...
- Python 文本相似度分析
环境 Anaconda3 Python 3.6, Window 64bit 目的 利用 jieba 进行分词,关键词提取 利用gensim下面的corpora,models,similarities ...
- 基于python语言使用余弦相似性算法进行文本相似度分析
编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手 ...
- LSTM 句子相似度分析
使用句子中出现单词的Vector加权平均进行文本相似度分析虽然简单,但也有比较明显的缺点:没有考虑词序且词向量区别不明确.如下面两个句子: "北京的首都是中国"与"中国的 ...
- 【机器学习】使用gensim 的 doc2vec 实现文本相似度检测
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档 ...
随机推荐
- Hive的严格模式
在hive里面可以通过严格模式防止用户执行那些可能产生意想不到的不好的效果的查询,从而保护hive的集群. 用户可以通过 set hive.mapred.mode=strict 来设置严格模式,改成u ...
- Java 线程池的实现
http://blog.csdn.net/iterzebra/article/details/6758481 http://blog.sina.com.cn/s/blog_4914a33b010118 ...
- [Codeforces-div.1 494B]Obsessive String
[CF-div.1 B]Obsessive String 题目大意 两个字符串\(S,T\),求划分方案数使得一个集合中两两划分不相交且划分都包含字符串\(T\) 试题分析 kmp先求出那个位置匹配. ...
- 【概率论】hdu5985 Lucky Coins
kill(i,j)表示第i种硬币在第j轮或者之前就死光的概率,它等于(1-pi^j)^num(i) rev(i,j)表示第i种硬币在j轮后仍然存活的概率,它等于1-kill(i,j) 然后对每种硬币i ...
- 【线段树】POJ3225-Help with Intervals
---恢复内容开始--- [题目大意] (直接引用ACM神犇概括,貌似是notonlysucess?) U:把区间[l,r]覆盖成1 I:把[-∞,l)(r,∞]覆盖成0 D:把区间[l,r]覆盖成0 ...
- python debug open_files
主要是遇到 Error 24, too many open files. 下面这种方法可以debug打开了哪些文件. import __builtin__ openfiles = set() oldf ...
- Activity(活动)的启动模式
在实际项目中我们应该根据特定的需求为每个活动指定相应的启动模式.启动模式一共分为4种:standar.singleTop.singleTask和singleInstance.可以在AndroidMan ...
- PHP手册笔记
<?php getenv — 获取一个环境变量的值 $ip = getenv ( 'REMOTE_ADDR' ); // 或简单仅使用全局变量($_SERVER 或 $_ENV) $ip = $ ...
- 8VC Venture Cup 2016 - Final Round (Div. 2 Edition) D. Factory Repairs 树状数组
D. Factory Repairs 题目连接: http://www.codeforces.com/contest/635/problem/D Description A factory produ ...
- Educational Codeforces Round 8 B. New Skateboard 暴力
B. New Skateboard 题目连接: http://www.codeforces.com/contest/628/problem/A Description Max wants to buy ...