R语言进行词云统计分析

本文章从爬虫、词频统计、可视化三个方面讲述了R语言的具体应用,欢迎大家共同谈论学习

1、使用 rvest 进行数据的爬取

#如果没有,先安装rvest包
install.packages("rvest")
library(rvest)
url <- "http://www.sohu.com/a/123426877_479559"
#读取数据,规定编码
web <- read_html(url, encoding = "utf-8")
position <- web %>% html_node("article.article") %>% html_text()
  • %>%管道函数,将左边的值赋给右边函数作为第一个参数的值
  • web存储网页信息的变量。
  • html_nodes()函数获取网页里的相应节点
  • html_text()函数获取标签内的文本信息

要获取网页中的节点,打开所要爬取网页内容——>按F12——>找到内容所对应的网页节点

2、使用jiebaR进行分词,统计词频

#install.packages("jiebaR")
library(jiebaR)
#初始化分词引擎并加载停用词
#user表示需要组合到一起的单词
#stop_word删除不需要出现的词
engine_s <- worker(user = "E:/R-Test/dictionary.txt", stop_word = "E:/R-Test/stopwords.txt")
#分词处理
seg<-segment(position, engine_s)
#统计词频
f <- freq(seg)
#根据词频降序排列(FALSE升序排列)
f <- f[order(f[2], decreasing = TRUE),]
#显示前30行的数据
head(f, 30)

1)“dictionary.txt”,是指明需要组合到一起的词组,比如说在默认情况下分词的结果可能会将“机器学习”处理成“机器”,“学习”,而我们其实想要的是“机器学习”,所以需要加载此字典表进行指定。注意:此文件的内容是自己指定的,具体内容如下:

机器学习
公众号
互联网
大鳄
大数据

2)“stopwords.txt”,是需要过滤掉的词组,比如“它”、“就是”、“作者”等词对于我们分析没有实际意义,我们就不需要统计他们,具体内容:


就是




这个
作者




3、使用wordcloud2包进行可视化

wordcloud2包的安装就不能像前面的直接使用install.packages("wordcloud2")进行安装了,因为这样的安装的wordcloud2就无法绘制图片和汉字的词云。他需要先安装“devtools”包,具体方法如下:

#安装方法1:
install.packages('devtools')
library('devtools')
install_github("lchiffon/wordcloud2")
library(wordcloud2)
#安装方法2(在RStudio中执行):
if(!require(devtools)) install.packages("devtools")
devtools::install_github('lchiffon/wordcloud2')

然后就使用词云进行绘图了,这里 shape 的参数有:默认为圆形(circle),cardioid(心形),star(星形),diamond(钻石形),triangle-forward(三角形),triangle(三角形),这两个三角形就是倾斜方向不同而已,pentagon(五边形)。

#为了显示效果,只提取前150个字
f2 <- f[1:150,]
#形状设置为一颗五角星
wordcloud2(f2, size = 0.8, shape = "star"
wordcloud2(f2, size =0.745, shape = "cardioid")
wordcloud2(f2, size =0.9, shape = "diamond")

加载一张图片,让显示图片的样式

#加载一张图片
path <- "E:/R-Test/245937.jpg"
#如果图形不像,调整size的值
wordcloud2(f, size = 0.45, figPath = path)

letterCloud用来显示指定的字母或者汉字,Word参数用于设置绘制词云形状为“”这个字

letterCloud(f2, word = "LOVE", size = 0.7)

【注意】可能我们已经发现,前面图中出现的高频词汇“机器学习”、“算法”等随着我们画出来的图丢失了。那是应该我们后边描绘的图的边太细,而“机器学习”的词频又特别高,所以就显示不出来。因此我们在选择绘图的时候不能为了美观而忽略了高频词

R语言进行词云统计分析的更多相关文章

  1. R语言之词云:wordcloud&wordcloud2安装及参数说明

    一.wordcloud安装说明 install.packages("wordcloud"); 二.wordcloud2安装说明 install.packages("dev ...

  2. R语言︱文本挖掘——词云wordcloud2包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者看到微信公众号探数寻理中提到郎大为Chif ...

  3. R语言文本挖掘+词云显示(jiebaR包+wordcloud2包)

    利用2018年政府工作报告的例子向大家展示一下R语言如何进行文本挖掘的~用到的包有jiebaR和wordcloud2. 1.安装并加载jiebaR install.packages("jie ...

  4. NLP实现文本分词+在线词云实现工具

    实现文本分词+在线词云实现工具 词云是NLP中比较简单而且效果较好的一种表达方式,说到可视化,R语言当仍不让,可见R语言︱文本挖掘——词云wordcloud2包 当然用代码写词云还是比较费劲的,网上也 ...

  5. R+tmcn笔记︱tmcn包的基本内容以及李舰老师R语言大会展示内容摘录

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- tmcn包目前托管在在R-forge 上开发和 ...

  6. 萌新学习Python爬取B站弹幕+R语言分词demo说明

    代码地址如下:http://www.demodashi.com/demo/11578.html 一.写在前面 之前在简书首页看到了Python爬虫的介绍,于是就想着爬取B站弹幕并绘制词云,因此有了这样 ...

  7. 中文分词实践(基于R语言)

    背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事 ...

  8. 使用R语言将微信记录制作成词云(简洁)--情人节奥义

    一.导出并读入微信聊天记录     参照百度的方法,使用同步助手.安装同步助手--连接手机(安卓苹果均可)--点击"其他功能"--点击微信图标即可进入聊天记录导出界面(非常简单). ...

  9. R系列:分词、去停用词、画词云(词云形状可自定义)

    附注:不要问我为什么写这么快,是16年写的. R的优点:免费.界面友好(个人认为没有matlab友好,matlab在我心中就是统计软件中极简主义的代表).小(压缩包就几十M,MATLAB.R2009b ...

随机推荐

  1. Redis缓存方案

    1 Redis简介 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发 ...

  2. T-SQL语法学习一(持续更新)

    T-SQL语法学习(一) 第一节 不常用语句 不常用语句-指的是一些不常用的查询语句,不针对业务数据查询 SET STATISTICS IO ON(用于查询逻辑读取次数,物理读取次数) 图片 sele ...

  3. 沉淀,再出发——在Hadoop集群的基础上搭建Spark

    在Hadoop集群的基础上搭建Spark 一.环境准备 在搭建Spark环境之前必须搭建Hadoop平台,尽管以前的一些博客上说在单机的环境下使用本地FS不用搭建Hadoop集群,可是在新版spark ...

  4. yii2.0的gradview点击按钮通过get方式传参

    1.直接看views层里的代码就可以了 , <!--?= GridView::widget([ 'dataProvider' =--> $dataProvider, 'filterMode ...

  5. photo的复数是photos

    以O结尾的单词变复数时,有生命的加es,无生命的加s. 如:photo,zoo,为无生命的,+s tomato,potato为有生命的,+es. 自己总结的,但到目前为止还没有遇到过例外的.记住这一个 ...

  6. TFS--解决新创建的windows用户无法访问TFS的问题

    今天入职新同事,帮忙配置TFS的账号碰到一个问题,TFS账号是映射取administrators组得 所以新建用户之后,无法马上引入TFS.查询原因是 Builtin组中没有该账号,以前也总是碰到新加 ...

  7. SAP专家培训之Netweaver ABAP内存管理和内存调优最佳实践

    培训者:SAP成都研究院开发人员Jerry Wang 1. Understanding Memory Objects in ABAP Note1: DATA itab WITH HEADER LINE ...

  8. Python之Dict和Set类型(入门5)

    转载请标明出处: http://www.cnblogs.com/why168888/p/6407905.html 本文出自:[Edwin博客园] Python之Dict和Set类型 1. Python ...

  9. AngularJs学习笔记--E2E Testing

    原版地址:http://docs.angularjs.org/guide/dev_guide.e2e-testing 当一个应用的复杂度.大小在增加时,使得依靠人工去测试新特性的可靠性.抓Bug和回归 ...

  10. java动态代理的实现以及原理

    1.前言 之前对动态代理的技术只是表面上理解,没有形成一个体系,这里总结一下,整个动态代理的实现以及实现原理,以表述的更清楚一些. 2.动态代理的实现应用到的技术 1.动态编译技术,可以使用Java自 ...