【BZOJ2124】等差子序列

Description

给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3),
使得Ap1,Ap2,Ap3,…ApLen是一个等差序列。

Input

输入的第一行包含一个整数T,表示组数。
下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开。
N<=10000,T<=7

Output

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一行“N”。

Sample Input

2
3
1 3 2
3
3 2 1

Sample Output

N
Y

题解:显然我们只要让len=3就行。考虑枚举中间数,用桶维护之前已经出现过的数。我们将桶看成一个01串,如果当前数是v[i],考虑桶中v[i]左右两边的串。如果存在v[i]-j和v[i]+j在桶中的存在情况不同,则表明找到了一个等差子序列。即,如果不存在等差子序列,则桶中v[i]的左右两边一定是对称的。用树状数组维护桶的正反hash值即可。

我才不会告诉你这题直接用bitset就能过呢~

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000009;
const int maxn=10010;
int n;
int v[maxn];
ll bs[maxn];
struct node
{
ll s[maxn];
inline void updata(int x,ll val)
{
for(int i=x;i<=n;i+=i&-i) s[i]=(s[i]+val)%P;
}
inline ll query(int x)
{
ll ret=0;
for(int i=x;i;i-=i&-i) ret=(ret+s[i])%P;
return ret;
}
}s1,s2;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void work()
{
n=rd();
int i,a;
for(i=1;i<=n;i++) v[i]=rd();
memset(s1.s,0,sizeof(s1.s)),memset(s2.s,0,sizeof(s2.s));
for(bs[0]=1,i=1;i<=n;i++) bs[i]=bs[i-1]*131%P;
for(i=1;i<=n;i++)
{
a=min(v[i]-1,n-v[i]);
if((s1.query(v[i]+a)-s1.query(v[i])+P)*bs[n-v[i]+1]%P!=(s2.query(n-v[i]+1+a)-s2.query(n-v[i]+1)+P)*bs[v[i]]%P)
{
printf("Y\n");
return ;
}
s1.updata(v[i],bs[v[i]]),s2.updata(n-v[i]+1,bs[n-v[i]+1]);
}
printf("N\n");
}
int main()
{
int T=rd();
while(T--) work();
return 0;
}//2 3 1 3 2 3 3 2 1
 

【BZOJ2124】等差子序列 树状数组维护hash值的更多相关文章

  1. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  2. CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash

    传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...

  3. ACdreamoj 1011(树状数组维护字符串hash前缀和)

    题目链接:http://acdream.info/problem? pid=1019 题意:两种操作,第一种将字符串某个位置的字符换为还有一个字符.另外一种查询某个连续子序列是否是回文串: 解法:有两 ...

  4. [poj3378] Crazy Thairs (DP + 树状数组维护 + 高精度)

    树状数组维护DP + 高精度 Description These days, Sempr is crazed on one problem named Crazy Thair. Given N (1 ...

  5. ural 1989(树状数组+多项式hash)

    题意:给出一个字符串.有两种操作,一个是p a b,问字符串从位置a到位置b的子串是否是一个回文子串.还有一个操作 c a b,把字符串位置a的字符替换为b. 题解:由于字符串长度为1e5且问的次数也 ...

  6. HDU 5869 Different GCD Subarray Query (GCD种类预处理+树状数组维护)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5869 问你l~r之间的连续序列的gcd种类. 首先固定右端点,预处理gcd不同尽量靠右的位置(此时gc ...

  7. POJ 3321 Apple Tree(后根遍历将树转化成序列,用树状数组维护)

    题意:一棵树,有很多分叉,每个分叉上最多有1个苹果. 给出n,接下来n-1行,每行u,v,表示分叉u,v之间有树枝相连.这里数据中u相当于树中的父节点,v相当于子节点. 给出两个操作: 1.C x  ...

  8. 第十二届湖南省赛G - Parenthesis (树状数组维护)

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  9. LOJ107. 维护全序集【树状数组维护全序集】

    题目描述 这是一道模板题,其数据比「普通平衡树」更强. 如未特别说明,以下所有数据均为整数. 维护一个多重集 S ,初始为空,有以下几种操作: 把 x 加入 S 删除 S 中的一个 x,保证删除的 x ...

随机推荐

  1. Android之ImageButton控件基础操作

    控件绑定(前台对应控件的id属性要设置为imageButton_light) private ImageButton imageButton_light;//定义一个ImageButton控件对象,名 ...

  2. Caused by: java.lang.NoSuchMethodException: <init> [class android.content.Context, interface android.util.AttributeSet] 异常

    1. 异常描述 FATAL EXCEPTION: main Process: com.whereru.greengrass.goforit, PID: 13847 java.lang.RuntimeE ...

  3. android 关于setWidth()和setHeight()没反应的问题

      在android开发过程中,对于控件的高度,宽度,虽然在xml中用android:layout_height="match_parent"设置了 高度(match_parent ...

  4. 两种方法一句代码隐藏Activity的标题栏

    把Activity的标题栏隐藏有两种方法.一种是在在Activity里面设置javacode.还有一种是在项目的清单文件AndroidManifest.xml中设置模版样式. 一.在Activity中 ...

  5. 【剑指offer】Q17:合并两个排序的链表

    def Merge(head1, head2): if head1 == None: return head2 if head2 == None: return head1 psuhead = Lis ...

  6. LayerMask小结

    layerMask参数: Raycast (ray : Ray, out hitInfo : RaycastHit, distance : float = Mathf.Infinity, layerM ...

  7. 关于UI功能解锁,UI特效动画,UI tips的再思考

    之前写过一篇这样的文章,但当时的思路可行性太低 首先所有的UI面板通过发送字符串消息来告知,是否触发了解锁检测,tips检测,动画特效.可以理解为这样的接口: AsyncResult SendUIMe ...

  8. 第一篇:初识python

    1.python介绍 Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年. Python的官方介绍是: ...

  9. Spring事务的隔离级别

    1.  ISOLATION_DEFAULT: 这是一个 PlatfromTransactionManager  默认的隔离级别,使用数据库默认的事务隔离级别. 另外四个与 JDBC的隔离级别相对应: ...

  10. 清理iOS中的“其他”空间垃圾文件

    关于如何清理 iOS 里的"其他"空间的教程,网上搜索那是一大堆,不过都是对于2010年某坛某篇"技术文"的无数次简单复制粘帖,可行性已经被各路尝试者们踩到了地 ...