【快速幂】POJ3641 - Pseudoprime numbers
输入a和p。如果p不是素数,则若满足ap = a (mod p)输出yes,不满足或者p为素数输出no。最简单的快速幂,啥也不说了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll p,a; int whether(int p)
{
int f=;
for (int i=;i*i<=p;i++)
if (p%i==)
{
f=;
break;
}
return f;
} int submain()
{
ll res=,n=p,x=a;
while (n>)
{
if (n&) res=res * x % p;
/*如果n最后一位是一,那么乘上x*/
x=x*x % p;
n>>=;
/*右移以为,即除以二*/
}
return (res==a);
} int main()
{
while (scanf("%lld%lld",&p,&a))
{
if (p==a && a==) break;
if (!whether(p))
{
if (submain()) cout<<"yes"<<endl;
else cout<<"no"<<endl;
}
else
cout<<"no"<<endl;
}
return ;
}
【快速幂】POJ3641 - Pseudoprime numbers的更多相关文章
- GCD&&素筛&&快速幂 --A - Pseudoprime numbers
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). Th ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
- POJ3641 Pseudoprime numbers (幂取模板子)
给你两个数字p,a.如果p是素数,并且ap mod p = a,输出“yes”,否则输出“no”. 很简单的板子题.核心算法是幂取模(算法详见<算法竞赛入门经典>315页). 幂取模板子: ...
- 【POJ - 3641】Pseudoprime numbers (快速幂)
Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以 ...
- POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...
- HDU 3641 Pseudoprime numbers(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11336 Accepted: 4 ...
- poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...
- pojPseudoprime numbers (快速幂)
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
- HDU 2817 A sequence of numbers 整数快速幂
A sequence of numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- div圆角
div{ -moz-border-radius: 10px; -webkit-border-radius: 10px; border-radius: 10px;}
- Part2-HttpClient官方教程-Chapter6-HTTP缓存(HTTP Caching)
原文链接 6.1. 一般概念 HttpClient Cache提供了一个与HTTP / 1.1兼容的缓存层与HttpClient(浏览器缓存的Java等价物.)一起使用.该实现遵循责任链设计模式,其中 ...
- 9.quartus_warning_altera_reserved_tck
编译的时候没有注意,整个工程都可以在板子上跑起来.但是做Powerplay的时候,出现了这个Critical Warning:. Critical Warning: The following clo ...
- spin_USACO
Spinning Wheels1998 ACM NE Regionals Each of five opaque spinning wheels has one or more wedges cut ...
- linux非阻塞的socket EAGAIN的错误处理【转】
转自:http://blog.csdn.net/tianmohust/article/details/8691644 版权声明:本文为博主原创文章,未经博主允许不得转载. 在Linux中使用非阻塞的s ...
- 自动化测试===Macaca环境搭建和说明书
https://www.cnblogs.com/tim2016/p/6400326.html http://www.cnblogs.com/fnng/p/5873878.html https://ww ...
- sicily 1001. Fibonacci 2
1001. Fibonacci 2 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn-1 + F ...
- 数据类型转换(计算mac地址)
[root@localhost test1]# vim 19.py //add #!/usr/bin/python macaddr = '00:0C:29:D1:6F:E9' prefix_mac = ...
- laravel 中的入口文件报错
1.此次是由于加载的配置文件的编码错误导致的.例:conf.php
- datatables的学习总结
$(document).ready(function() { var oTable= $('#dataTables-example').DataTable({ // searching : false ...