【快速幂】POJ3641 - Pseudoprime numbers
输入a和p。如果p不是素数,则若满足ap = a (mod p)输出yes,不满足或者p为素数输出no。最简单的快速幂,啥也不说了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll p,a; int whether(int p)
{
int f=;
for (int i=;i*i<=p;i++)
if (p%i==)
{
f=;
break;
}
return f;
} int submain()
{
ll res=,n=p,x=a;
while (n>)
{
if (n&) res=res * x % p;
/*如果n最后一位是一,那么乘上x*/
x=x*x % p;
n>>=;
/*右移以为,即除以二*/
}
return (res==a);
} int main()
{
while (scanf("%lld%lld",&p,&a))
{
if (p==a && a==) break;
if (!whether(p))
{
if (submain()) cout<<"yes"<<endl;
else cout<<"no"<<endl;
}
else
cout<<"no"<<endl;
}
return ;
}
【快速幂】POJ3641 - Pseudoprime numbers的更多相关文章
- GCD&&素筛&&快速幂 --A - Pseudoprime numbers
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). Th ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
- POJ3641 Pseudoprime numbers (幂取模板子)
给你两个数字p,a.如果p是素数,并且ap mod p = a,输出“yes”,否则输出“no”. 很简单的板子题.核心算法是幂取模(算法详见<算法竞赛入门经典>315页). 幂取模板子: ...
- 【POJ - 3641】Pseudoprime numbers (快速幂)
Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以 ...
- POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...
- HDU 3641 Pseudoprime numbers(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11336 Accepted: 4 ...
- poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...
- pojPseudoprime numbers (快速幂)
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...
- HDU 2817 A sequence of numbers 整数快速幂
A sequence of numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- ubuntu下调整cpu频率
环境:ubuntu15.10 查看内核支持的cpu策略 cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors 比如我 ...
- Java面向对象的三个特征与含义
封装 1.英文为 encapsulation,实现信息隐藏: 2.把同一类事物的特性归纳到一个类中(属性和行为),隐藏对象的内部实现: 继承 1.英文为 inheritance: 2.继承的过程,是从 ...
- python近期遇到的一些面试问题(一)
整理一下最近被问到的一些高频率的面试问题.总结一下方便日后复习巩固用,同时希望可以帮助一些朋友们. 1.python的基本数据类型 主要核心类型分为两类不可变类型:数字(int float bool ...
- Chrome控制台的妙用之使用XPATH
谷歌浏览器,对于作为程序员的我们来说可以是居家必备了,应该用的相当的熟悉了,我们用的最多的应该是network选项吧,一般用来分析网页加载的请求信息,比如post参数之类的,这些基本的功能基本上够用了 ...
- CNN中千奇百怪的卷积方式大汇总
1.原始版本 最早的卷积方式还没有任何骚套路,那就也没什么好说的了. 见下图,原始的conv操作可以看做一个2D版本的无隐层神经网络. 附上一个卷积详细流程: [TensorFlow]tf.nn.co ...
- c basic library framework - simplec 2.0.0
前言 - simplec 单元测试 流程介绍 一个关于C基础库 simplec 2.0.0 发布了. 详细的文档介绍请参照 README.md. 说的再多都无用, 抵不上 gdb 一个 b r n. ...
- 在 Visual Studio 中使用正则表达式
Visual Studio 使用 .NET framework 正则表达式查找和替换文本. 在 Visual Studio 2010 和早期版本中,Visual Studio 在“查找和替换”窗口中使 ...
- ExecutorService 用例
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Tes ...
- node中--save跟--save--dev
--save参数表示将该模块写入dependencies属性, --save-dev表示将该模块写入devDependencies属性. dependencies字段指定了项目运行所依赖的模, d ...
- Linux下服务器搭建
一.安装前准备工作 yum -y install gcc yum -y install gcc-c++ yum -y install make yum -y install ncurses-d ...