[BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
分析
半平面交的模板题。维护一个栈,把所有边按极角排序后依次插入,每次弹出所有可以被覆盖的直线。

#include <iostream>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <assert.h>
inline ;
, c = getchar();
x = c - + c - }
;
typedef }line[maxn], St[maxn];
inline getd(N); ;i <= N;++i)
getd(line[i].A), getd(line[i].B), line[i].id = i;
sort(line + , line + N + );
}
;
inline St[it++] = line[];
;i <= N;++i){
].A){
].B)
St[it-] = line[i];
}
){
LL a = (LL)(St[it-].B - St[it-].B) * (line[i].A - St[it-].A);
LL b = (LL)(St[it-].B - line[i].B) * (St[it-].A - St[it-].A);
}
St[it++] = line[i];
}
;
;i <= N;++i)
}
freopen( init();
work();
;
}
半平面交
[BZOJ1007](HNOI2008)水平可见直线(半平面交习题)的更多相关文章
- [日常摸鱼]bzoj1007[HNOI2008]水平可见直线-半平面交(对偶转凸包)
不会写半平面交-然后发现可以转成对偶凸包问题 具体见这里:http://trinkle.blog.uoj.ac/blog/235 相关的原理我好像还是不太懂-orz #include<cstdi ...
- 【bzoj1007】[HNOI2008]水平可见直线 半平面交/单调栈
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- BZOJ 1007 [HNOI2008]水平可见直线 ——半平面交 凸包
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #incl ...
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
随机推荐
- 【shell】shell编程(六)-shell函数的应用
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用. shell中函数的定义格式如下: [ function ] funname [()] { action; [return ...
- 区块链~Merkle Tree(默克尔树)算法解析~转载
转载~Merkle Tree(默克尔树)算法解析 /*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为 ...
- ERROR: do not initialise statics to false
Question about git commit rule I git commit a patch, The patch has a "static int xxxxxxxxxxxxxx ...
- 自动化测试===Httprunner测试框架介绍
项目地址: https://github.com/HttpRunner/HttpRunner 中文手册: http://cn.httprunner.org/ 首先是环境搭建: pip install ...
- C基础 读写锁中级剖析
引言 读写锁 是为了 解决, 大量 ''读'' 和 少量 ''写'' 的业务而设计的. 读写锁有3个特征: 1.当读写锁是写加锁状态时,在这个锁被解锁之前,所有试图对这个锁加锁的线程都会被阻塞 2.当 ...
- how to create view (windows)
View Server List IP address: 200.xx.xx.xx How to create a new view ssh new view server by your Unix ...
- ASPxgridview 编辑列初始化事件
在初始化编辑咧的时候,给其赋值或者是disable等等.... 贴上代码 protected void master_CellEditorInitialize(object sender, ASPxG ...
- SQL 列 转换成 查询出来的 行
查询 每个学生 的 (姓名,语文,数学,英语,成绩)为列 表结构如下: student: 学生表 grade 成绩表 : 查询出如下效果: SQL如下: select s.name,a.* fro ...
- windows系统安装mysql压缩zip版
1.下载 打开官网:https://www.mysql.com 进入DOWNLOADS--->Community--->MySQL Community Server,选择系统对应的版本点击 ...
- NOIP 2010
tags: NOIP 并查集 动态规划 搜索 categories: 信息学竞赛 总结 机器翻译 乌龟棋 关押罪犯 引水入城 机器翻译 Solution 维护一个队列, 每次从词典中查词时将单词加入队 ...