Pandas级联
Pandas提供了各种工具(功能),可以轻松地将Series
,DataFrame
和Panel
对象组合在一起。
pd.concat(objs,axis=0,join='outer',join_axes=None,
ignore_index=False)
其中,
- objs - 这是Series,DataFrame或Panel对象的序列或映射。
- axis -
{0,1,...}
,默认为0
,这是连接的轴。 - join -
{'inner', 'outer'}
,默认inner
。如何处理其他轴上的索引。联合的外部和交叉的内部。 - ignore_index − 布尔值,默认为
False
。如果指定为True
,则不要使用连接轴上的索引值。结果轴将被标记为:0,...,n-1
。 - join_axes - 这是Index对象的列表。用于其他
(n-1)
轴的特定索引,而不是执行内部/外部集逻辑。
连接对象
concat()
函数完成了沿轴执行级联操作的所有重要工作。下面代码中,创建不同的对象并进行连接。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two])
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
假设想把特定的键与每个碎片的DataFrame关联起来。可以通过使用键参数来实现这一点 -
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],keys=['x','y'])
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index
设置为True
。参考以下示例代码 -
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id
0 98 Alex sub1
1 90 Amy sub2
2 87 Allen sub4
3 69 Alice sub6
4 78 Ayoung sub5
5 89 Billy sub2
6 80 Brian sub4
7 79 Bran sub3
8 97 Bryce sub6
9 88 Betty sub5
观察,索引完全改变,键也被覆盖。如果需要沿axis=1
添加两个对象,则会添加新列。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],axis=1)
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id Marks_scored Name subject_id
1 98 Alex sub1 89 Billy sub2
2 90 Amy sub2 80 Brian sub4
3 87 Allen sub4 79 Bran sub3
4 69 Alice sub6 97 Bryce sub6
5 78 Ayoung sub5 88 Betty sub5
使用附加连接
连接的一个有用的快捷方式是在Series和DataFrame实例的append
方法。这些方法实际上早于concat()
方法。 它们沿axis=0
连接,即索引 -
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = one.append(two)
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
append()
函数也可以带多个对象 -
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = one.append([two,one,two])
print(rs)
执行上面示例代码,得到以下结果 -
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
时间序列
Pandas为时间序列数据的工作时间提供了一个强大的工具,尤其是在金融领域。在处理时间序列数据时,我们经常遇到以下情况 -
- 生成时间序列
- 将时间序列转换为不同的频率
Pandas提供了一个相对紧凑和自包含的工具来执行上述任务。
获取当前时间
datetime.now()
用于获取当前的日期和时间。
import pandas as pd
print pd.datetime.now()
上述代码执行结果如下 -
2017-11-03 02:17:45.997992
创建一个时间戳
时间戳数据是时间序列数据的最基本类型,它将数值与时间点相关联。 对于Pandas对象来说,意味着使用时间点。举个例子 -
import pandas as pd
time = pd.Timestamp('2018-11-01')
print(time)
执行上面示例代码,得到以下结果 -
2018-11-01 00:00:00
也可以转换整数或浮动时期。这些的默认单位是纳秒(因为这些是如何存储时间戳的)。 然而,时代往往存储在另一个可以指定的单元中。 再举一个例子 -
import pandas as pd
time = pd.Timestamp(1588686880,unit='s')
print(time)
执行上面示例代码,得到以下结果 -
2020-05-05 13:54:40
创建一个时间范围
import pandas as pd
time = pd.date_range("12:00", "23:59", freq="30min").time
print(time)
执行上面示例代码,得到以下结果 -
[datetime.time(12, 0) datetime.time(12, 30) datetime.time(13, 0)
datetime.time(13, 30) datetime.time(14, 0) datetime.time(14, 30)
datetime.time(15, 0) datetime.time(15, 30) datetime.time(16, 0)
datetime.time(16, 30) datetime.time(17, 0) datetime.time(17, 30)
datetime.time(18, 0) datetime.time(18, 30) datetime.time(19, 0)
datetime.time(19, 30) datetime.time(20, 0) datetime.time(20, 30)
datetime.time(21, 0) datetime.time(21, 30) datetime.time(22, 0)
datetime.time(22, 30) datetime.time(23, 0) datetime.time(23, 30)]
改变时间的频率
import pandas as pd
time = pd.date_range("12:00", "23:59", freq="H").time
print(time)
执行上面示例代码,得到以下结果 -
[datetime.time(12, 0) datetime.time(13, 0) datetime.time(14, 0)
datetime.time(15, 0) datetime.time(16, 0) datetime.time(17, 0)
datetime.time(18, 0) datetime.time(19, 0) datetime.time(20, 0)
datetime.time(21, 0) datetime.time(22, 0) datetime.time(23, 0)]
转换为时间戳
要转换类似日期的对象(例如字符串,时代或混合)的序列或类似列表的对象,可以使用to_datetime
函数。当传递时将返回一个Series(具有相同的索引),而类似列表被转换为DatetimeIndex
。 看看下面的例子 -
import pandas as pd
time = pd.to_datetime(pd.Series(['Jul 31, 2009','2019-10-10', None]))
print(time)
执行上面示例代码,得到以下结果 -
0 2009-07-31
1 2019-10-10
2 NaT
dtype: datetime64[ns]
NaT
表示不是一个时间的值(相当于NaN
)
举一个例子,
import pandas as pd
import pandas as pd
time = pd.to_datetime(['2009/11/23', '2019.12.31', None])
print(time)
执行上面示例代码,得到以下结果 -
DatetimeIndex(['2009-11-23', '2019-12-31', 'NaT'], dtype='datetime64[ns]', freq=None)
Pandas级联的更多相关文章
- pandas 级联 concat append
连接的一个有用的快捷方式是在Series和DataFrame实例的append方法.这些方法实际上早于concat()方法. 它们沿axis=0连接 #encoding:utf8 import pan ...
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Numpy Pandas
数据分析 : 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律. 数据分析三剑客 - Numpy Pandas Matplotlib # Numpy 基于一维或多维的数 ...
- Pandas | 20 级联
Pandas提供了各种工具(功能),可以轻松地将Series,DataFrame和Panel对象组合在一起. pd.concat(objs,axis=0,join='outer',join_axes= ...
- 数据分析03 /基于pandas的数据清洗、级联、合并
数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处 ...
- pandas的级联操作
级联操作 pd.concat, pd.append import pandas as pd from pandas import DataFrame import numpy as np pandas ...
- 第十五节:pandas之concat()级联
Pandas 提供了concat()函数可以轻松的将Series.DataFrame对象进行合并在一起. pandas.concat(obj , axis=0 , join="inner&q ...
- 第三节 pandas续集
import pandas as pd from pandas import Series from pandas import DataFrame import numpy as np 一 创建多层 ...
- 数据分析之Pandas
一.Pandas介绍 1.介绍 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. ...
随机推荐
- 【IDEA】Maven踩坑:pom文件中的默认profiles不生效+IDEA中Maven的profiles使用说明
一.问题即分析 项目pom文件中的profiles有3个配置:dev.test和production 默认配置的是dev,如下图: 但在本地起服务时,读取的配置始终是test里的. 二.原因 2.1 ...
- node.js开发学习一HelloWorld
前言:由于公司业务需求,最近启动了node.js的开发任务,想把自己的开发学习历程记录记录下来,可以增加记忆,也方便查找.虽然对javascript有一定的了解,但是刚接触node.js的时候,发现还 ...
- windows程序查看可以行文件依赖库
通常在做windows下开发程序,发布的时候需要同时打包一些依赖库:我们可以通过工具直接查看需要发布的程序依赖的程序,这样可以方便快捷的打包程序 这里我们推荐使用:dependencywalker 下 ...
- Storm的组件
摘自网上 当时写的很好,很详细的介绍了各个组件直接的关系 Storm集群和Hadoop集群表面上看很类似.但是Hadoop上运行的是MapReduce jobs,而在Storm上运行的是拓扑(topo ...
- Restful风格到底是什么?怎么应用到我们的项目中?
rest越来越流行,感觉挺高大尚的.网上看了很多网友的说法,各有各的看法,我觉得很多说得很有道理. 说法一 restful风格,就是一种面向资源服务的API设计方式,它不是规范,不是标准,它一种设计模 ...
- mysql主从同步因断电产生的不能同步问题
偶尔因为断电导致mysql slave 出现复制错误“Could not parse relay log event entry” Could not parse relay log event en ...
- 以K个为一组反转单链表,最后不足K个节点的部分也反转
package StackMin.ReverseList_offer16; public class ReverseKgroup_extend_offer16 { /** * 分组反转单链表,最后不足 ...
- django 表单系统 之 forms.Form
继承forms.Form实现django表单系统 参考: https://www.cnblogs.com/zongfa/p/7709639.html https://www.cnblogs.com/c ...
- Python__return
return的注意点: return返回的值, 没有任何类型限制 return是函数结束的标志,函数内可以写多个return,但执行一次,函数就立刻结束,并把return后的值作为本次调用的返回值.
- Flask(4)- flask请求上下文源码解读、http聊天室单聊/群聊(基于gevent-websocket)
一.flask请求上下文源码解读 通过上篇源码分析,我们知道了有请求发来的时候就执行了app(Flask的实例化对象)的__call__方法,而__call__方法返回了app的wsgi_app(en ...