[SCOI2007]压缩

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1644  Solved: 1042
[Submit][Status][Discuss]

Description

  给一个由小写字母组成的字符串,我们可以用一种简单的方法来压缩其中的重复信息。压缩后的字符串除了小
写字母外还可以(但不必)包含大写字母R与M,其中M标记重复串的开始,R重复从上一个M(如果当前位置左边没
有M,则从串的开始算起)开始的解压结果(称为缓冲串)。 bcdcdcdcd可以压缩为bMcdRR,下面是解压缩的过程

  另一个例子是abcabcdabcabcdxyxyz可以被压缩为abcRdRMxyRz。

Input

  输入仅一行,包含待压缩字符串,仅包含小写字母,长度为n。

Output

  输出仅一行,即压缩后字符串的最短长度。

Sample Input

bcdcdcdcdxcdcdcdcd

Sample Output

12

HINT

在第一个例子中,解为aaaRa,在第二个例子中,解为bMcdRRxMcdRR。

【限制】

100%的数据满足:1<=n<=50 100%的数据满足:1<=n<=50

题解:

    这题就是一个普通的区间dp

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue> #define N 1007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} char s[];
int f[][][];
bool mark[][][]; bool same(int a,int b)
{
int l=b-a+;
if(l&)return ;
for(int i=a;i<=(a+b)/;i++)
if(s[i]!=s[i+l/])return ;
return ;
}
int dp(int a,int b,bool t)
{
int tmp=b-a+;
if(tmp==)return ;
if(mark[a][b][t])return f[a][b][t];
mark[a][b][t]=;
if(t)for(int i=a;i<b;i++)tmp=min(tmp,dp(a,i,)+dp(i+,b,)+);
for(int i=a;i<b;i++)tmp=min(tmp,dp(a,i,t)+b-i);
if(same(a,b))tmp=min(tmp,dp(a,(a+b)/,)+);
return f[a][b][t]=tmp;
}
int main()
{
scanf("%s",s+);
int l=strlen(s+);
printf("%d",dp(,l,));
return ;
}

bzoj 1068 [SCOI2007]压缩 区间dp的更多相关文章

  1. bzoj 1068: [SCOI2007]压缩 DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 496  Solved: 315[Submit][Status] D ...

  2. bzoj 1068: [SCOI2007]压缩【区间dp】

    神区间dp 设f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内只有这一个M,f[l][r][0]为在l到r中压缩的第一个字符为M,并且区间内有两个及以上的M 然后显然的转移是f[i][ ...

  3. [BZOJ 1068] [SCOI2007] 压缩 【记忆化搜索】

    题目链接:BZOJ - 1068 题目分析 这种记忆化搜索(区间 DP) 之前就做过类似的,也是字符串压缩问题,不过这道题稍微复杂一些. 需要注意如果某一段是 S1S1 重复,那么可以变成 M + S ...

  4. BZOJ 1068: [SCOI2007]压缩

    Sol 区间DP.这个区间DP需要三维, \(f[i][j][k]\) 表示\([i,j]\) 这个区间中是否存在 \(M\) . 转移有两种,一种是这个区间存在 \(M\) ,那么直接枚举 \(M\ ...

  5. B1068 [SCOI2007]压缩 区间dp

    这个题我状态想对了,但是转移错了...dp的代码难度都不大,但是思考含量太高了..不会啊,我太菜了. 其实这个题就是一个正常的区间dp,中间多了一个特判的转移就行了. 题干: Description ...

  6. [SCOI2007]压缩 区间dp

    明显是个区间dp,但是我区间dp就是个渣... f[i][j]表示区间i到j最短的字符长度:假设前面加了个M,所以初始化f[i][i]=2;当然最开始是不算M的,所以f[1][1]=1;然后就可以区间 ...

  7. 洛谷P2470 [SCOI2007]压缩(区间dp)

    题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...

  8. 【BZOJ】1068: [SCOI2007]压缩(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1068 发现如果只设一维的话无法转移 那么我们开第二维,发现对于前i个来说,如果确定了M在哪里,第i个 ...

  9. 【BZOJ-1068】压缩 区间DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1001  Solved: 615[Submit][Status][ ...

随机推荐

  1. Python3 下安装python-votesmart

    在python2下安装python-smart还比较容易,而python3中由于很多函数库的变化直接使用python setup.py install 命令来安装的话会导致错误,而导致错误的原因就是p ...

  2. Deep Residual Learning for Image Recognition论文笔记

    Abstract We present a residual learning framework to ease the training of networks that are substant ...

  3. ServiceStack.Ormlit 使用Insert的时候自增列不会被赋值

    Insert签名是这样的,将第2个参数设置为true就会返回刚插入的自增列ID了,然后可以手工赋值到对象上面去 public static long Insert<T>(this IDbC ...

  4. Linux error:No space left on device

    一台Oracle数据库服务器在关机重启后,Oracle监听无法启动,提示错误 Linux error:no space left on device 提示可知:问题是出在磁盘空间不足 但是初步查看分区 ...

  5. C# .net 调用QQ邮箱

    public static void QQfs() { try { MailMessage mm = new MailMessage(); MailAddress Fromma = new MailA ...

  6. 图解linux安装tomcat(附常用命令)

    本例使用的是centos6.5版本,具体内容如下 一.首先到官方下载tomcat服务 http://tomcat.apache.org/download-70.cgi 二.将tomcat上传至linu ...

  7. 编译android6.0错误recipe for target 'out/host/linux-x86/obj/lib/libart.so' failed

    转自:http://blog.csdn.net/ztguang/article/details/52856076 trip: libpagemap_32 (out/target/product/xx/ ...

  8. DVD与CD区别

    经常听朋友说什么DVD什么CD什么的,不知道到底有什么区别,专门百度找了下,找到以下资料 ======================================================= ...

  9. array_intersect_assoc 与array_intersect区别

    1.array_intersect_assoc — 带索引检查计算数组的交集 说明 array array_intersect_assoc ( array $array1 , array $array ...

  10. 面试:谈谈你对Spring框架的理解

    Spring是一个优秀的轻量级框架,大大的提高了项目的开发管理与维护.Spring有两个核心模块.一个是IOC,一个是AOP. IOC: 就是控制反转的意思,指的是我们将对象的控制权从应用代码本身转移 ...