题意:

给定 \(n\) 个数的排列,\(m\) 次询问,每次询问询问一个区间内所有子区间的贡献。

每个区间如果两个端点分别是最大值次大值,我们就算 \(P1\) 的贡献。

如果两个端点一个是最大值,一个不是次大值,我们就算 \(P2\) 的贡献。

\(\text{Solution:}\)

将询问离线,处理出以 \(i\) 结尾的询问的答案。

考虑怎样的点 \(j(j<i)\) 满足它能与 \(i\) 组成区间 \(i\) ,\(j\) 分别是最大值与次大值或非次大值。

钦定 \(a[i]\) 比 \(a[j]\) 大,那么当 \(a[j]\) 为左边单调减的波峰的时候与 \(a[i]\) 有贡献 \(p1\) ,当 \(a[j]\) 为左边两个单调减的波峰之间的时候与 \(a[i]\) 有贡献 \(p2\) 。

维护单调减的波峰可以用单调栈。

由于钦定了 \(a[i] > a[j]\) 所以要倒过来再搞一遍。

像这种区间上不好直接维护的东西,可以考虑离线,讨论时要讨论清楚哪种点有贡献。

\(\text{Source:}\)

#include<vector>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <assert.h>
#include <algorithm> using namespace std; #define LL long long
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO\n") inline int rint() {
register int x = 0, f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x * f;
} template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; } const int N = 2e5 + 10; int n,m,p1,p2;
int a[N];
vector<pair<int,int> >Q,QR[N];
LL ans[N]; namespace SGT {
#define ls (x<<1)
#define rs (x<<1|1)
LL sum[N * 4], tag[N * 4];
void init() {
memset(sum, 0, sizeof sum);
memset(tag, 0, sizeof tag);
}
void pu(int x) {
sum[x] = sum[ls] + sum[rs];
}
void pd(int x, int l, int r) {
if (tag[x]) {
int mid = (l + r) >> 1;
sum[ls] += tag[x] * (mid - l + 1);
tag[ls] += tag[x];
sum[rs] += tag[x] * (r - mid);
tag[rs] += tag[x];
tag[x] = 0;
}
}
void Add(int L, int R, int val, int x = 1, int l = 1, int r = n) {
if (L > R) return;
if (L <= l and r <= R) {
sum[x] += val * (r - l + 1);
tag[x] += val;
return;
}
pd(x, l, r); int mid = (l + r) >> 1;
if (L <= mid) Add(L, R, val, ls, l, mid);
if (R > mid) Add(L, R, val, rs, mid + 1, r);
pu(x);
}
LL query(int L, int R, int x = 1, int l = 1, int r = n) {
if (L > R) return 0;
if (L <= l and r <= R) {
return sum[x];
}
pd(x, l, r); int mid = l + r >> 1;
LL ans = 0;
if (L <= mid) ans += query(L, R, ls, l, mid);
if (mid < R) ans += query(L, R, rs, mid + 1, r);
return ans;
}
}using SGT::Add; using SGT::query; void work() {
static int stk[N], top;
SGT::init();
top = 0;
for (int i = 1; i <= n; ++ i) {
int last = i;
while (top and a[stk[top]] <= a[i]) {
if (stk[top] + 1 < last)
Add(stk[top] + 1, last - 1, p2);
Add(stk[top], stk[top], p1);
last = stk[top--];
}
if (!top) Add(1, last - 1, p2);
else Add(stk[top] + 1, last - 1, p2);
stk[++top] = i;
for (int j = 0; j < QR[i].size(); ++ j)
ans[QR[i][j].second] += query(QR[i][j].first, i);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
n = rint(), m = rint(), p1 = rint(), p2 = rint();
for (int i = 1; i <= n; ++ i) a[i] = rint();
for (int i = 1; i <= m; ++ i){
int l = rint(), r = rint();
Q.push_back(make_pair(l, r));
}
for (int i = 0; i < m; ++ i)
QR[Q[i].second].push_back(make_pair(Q[i].first, i + 1));
work();
for (int i = 1; i <= n; ++ i)
QR[i].clear();
for (int i = 0; i < m; ++ i)
QR[n - Q[i].first + 1].push_back(make_pair(n - Q[i].second + 1, i + 1));
reverse(a + 1, a + 1 + n);
work();
for (int i = 1; i <= m; ++ i) printf("%lld\n", ans[i]);
}

[HNOI2017]影魔的更多相关文章

  1. bzoj 4826: [Hnoi2017]影魔 [主席树 单调栈]

    4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间 ...

  2. 4826: [Hnoi2017]影魔

    4826: [Hnoi2017]影魔 https://lydsy.com/JudgeOnline/problem.php?id=4826 分析: 莫队+单调栈+st表. 考虑如何O(1)加入一个点,删 ...

  3. 【LG3722】[HNOI2017]影魔

    [LG3722][HNOI2017]影魔 题面 洛谷 题解 先使用单调栈求出\(i\)左边第一个比\(i\)大的位置\(lp_i\),和右边第一个比\(i\)大的位置\(rp_i\). 考虑\(i\) ...

  4. [BZOJ4826][HNOI2017]影魔(主席树)

    4826: [Hnoi2017]影魔 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 669  Solved: 384[Submit][Status][ ...

  5. 【BZOJ4826】[Hnoi2017]影魔 单调栈+扫描线

    [BZOJ4826][Hnoi2017]影魔 Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝 ...

  6. [bzoj4826][Hnoi2017]影魔_单调栈_主席树

    影魔 bzoj-4826 Hnoi-2017 题目大意:给定一个$n$个数的序列$a$,求满足一下情况的点对个数: 注释:$1\le n,m\le 2\cdot 10^5$,$1\le p1,p2\l ...

  7. bzoj4826 [Hnoi2017]影魔

    Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵 ...

  8. BZOJ:4826: [Hnoi2017]影魔

    Description 影魔,奈文摩尔,据说有着一个诗人的灵魂.事实上,他吞噬的诗人灵魂早已成千上万.千百年来,他收集了各式各样的灵魂,包括诗人.牧师.帝王.乞丐.奴隶.罪人,当然,还有英雄.每一个灵 ...

  9. [AH/HNOI2017]影魔

    题目背景 影魔,奈文摩尔,据说有着一个诗人的灵魂. 事实上,他吞噬的诗人灵魂早已成千上万. 千百年来,他收集了各式各样的灵魂,包括诗人. 牧师. 帝王. 乞丐. 奴隶. 罪人,当然,还有英雄. 题目描 ...

  10. HNOI2017影魔

    影魔 这么简单的方法尽然想不到,我是真的菜 对每个点,用单调栈的方式处理出他左右第一个比他大的数的位置,你可以把\(0\)和\(n+1\)设成\(inf\). 显然对于每对\(lef[i]\)和\(r ...

随机推荐

  1. Swift_类型选择

    Swift_类型选择 点击查看源码 //类型选择 func test() { class MediaItem { } class Movie: MediaItem { } class Song: Me ...

  2. ABI是什么? Swift ABI稳定有什么好处?

    ABI是什么? 在软件开发中, 应用程序机器二元码界面(Application Binary Interface 简称ABI)指两个程序模块间的接口; 通常其中一个车还给你徐模块会是库或者操作系统提供 ...

  3. jquery 插件学习

    练习jquery上的一个插件编写 1.标准的3个基本内容,根目录里面创建2个文件夹(存放css和js)和1个html页面文件: 2.测试的主html页面代码 <!DOCTYPE html> ...

  4. 用JQ实现的一个简单轮播

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>lb ...

  5. Web移动端商城 移动端商城手机网站html整套模板,web移动商城仿app手机模板下载

    --Web移动端商城移动端商城手机网站html整套模板,web移动商城仿app手机模板下载.原生的js和jquery-1.6.2.min.js,页面才有html5自适应.包括首页(轮播,导航).兼职( ...

  6. redis之闪电内幕

    一.简介和应用 二.Redis的对象redisObject 三.String 四.List 4.1 linkedlist(双端链表) 4.2 ziplist(压缩列表) 五.Hash 六.Set 七. ...

  7. QQ好友的价值玩法 及如何搞到几万好友?

    我们知道,现在的自媒体平台太多了.微信公众号,企鹅媒体平台,今日头条.搜狐.UC.一点等等等. 但是现在的话最主要的就是盈利,我们很多朋友玩自媒体这个在很多平台都有自己的账号和大量的粉丝.但是,最后大 ...

  8. 学习新框架laravel4 第三天

    请求与输入 获取请求参数 如果没有传递默认值位1 $id= Input::get('id',1); //获取所有请求内容 Input::all() 取得请求 URI $uri = Request::p ...

  9. python学习笔记:第15天 初识面向对象

    目录 1. 面向对象和面向过程 2. 面向对象如何编写: 3. 面向对象的三大特征 封装 继承 多态 1. 面向对象和面向过程 面向对象和面向过程的理解: ⾯向过程: ⼀切以事物的流程为核⼼. 核⼼是 ...

  10. 关于java的wait、notify、notifyAll方法

    wait.notify.notifyAll 遇到的问题 之前开发打印机项目,因为需要使用多线程技术,当时并不怎么理解,一开始随意在方法体内使用wait.notify.notifyAll 方法导致出现了 ...