http://www.lydsy.com/JudgeOnline/problem.php?id=1597

https://www.luogu.org/problemnew/show/P2900

约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地。如果约翰单买一块土 地,价格就是土地的面积。但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽。比如约翰并购一块3 × 5和一块5 × 3的土地,他只需要支付5 × 5 = 25元, 比单买合算。 约翰希望买下所有的土地。他发现,将这些土地分成不同的小组来并购可以节省经费。 给定每份土地的尺寸,请你帮助他计算购买所有土地所需的最小费用。

为了写模拟赛的代码现学了斜率优化。

我们显然对于所有的土地按照长宽为第一、第二关键字降序排序,这样的话我们发现对于一块土地,要么它和它前面的土地捆绑买,要么和它后面的土地捆绑买,除此之外的买法显然不优。

那这样我们显然有一个O(n^2)的转移,接下来我们考虑优化。

我们要想优化dp,显然要有单调性,考虑到当一块土地的l和w都小于其它一些土地时它只能被捆绑买且对答案没有贡献,那么我们就可以删掉这些点。

那么剩下的点显然满足l单调降w单调升,于是先列出转移方程f[i]=min(f[k]+l[k+1]*w[i])。

考虑当k<j<i时,如果f[k]+l[k+1]*w[i]>f[j]+l[j+1]*w[i],那么显然j的状态是更优的,我们就可以把小的k踢出去。

将该式子可化为g[k,j]=(f[k]-f[j])/(l[j+1]-l[k+1])>w[i],于是我们有了一种判断当前状态是否需要被踢出的方法。

那么我们开一个单调队列,它的头就可以用这个方式维护。

至于它的尾,考虑当k<j<i时我们可以通过g[k,j]<g[j,i]来踢出j。

为什么?考虑如果g[j,i]>w我们就可以把j踢出。

如果g[k,j]<g[j,i]<w时那么显然k比j优,所以我们还可以把j踢出。

于是我们就能处理尾部了。

那么剩下的就很显然了,只有头指针代表的元素才是最优的,那么只从头处转移即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
struct buy{
ll l,w;
}a[N],b[N];
bool cmp(buy a,buy b){
return a.l>b.l||(a.l==b.l&&a.w>b.w);
}
int n,cnt,l,r,maxw;
ll f[N],q[N];
inline double suan(int j,int k){
return 1.0*(f[j]-f[k])/(b[k+].l-b[j+].l);
}
int main(){
n=read();
for(int i=;i<=n;i++)
a[i].l=read(),a[i].w=read();
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
if(a[i].w>maxw){
maxw=a[i].w;
b[++cnt]=a[i];
}
}
for(int i=;i<=cnt;i++){
while(l<r&&suan(q[l],q[l+])<(double)b[i].w)l++;
f[i]=f[q[l]]+b[q[l]+].l*b[i].w;
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[cnt]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1597 & 洛谷2900:[USACO2008 MAR]Land Acquisition 土地购买——题解的更多相关文章

  1. 洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)

    自闭的一批....为什么斜率优化能这么自闭. 首先看到这个题的第一想法一定是按照一个维度进行排序. 那我们不妨直接按照\(h_i\)排序. 我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多 ...

  2. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)

    洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...

  3. 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告

    P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...

  4. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)

    题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...

  5. 【洛谷P3369】【模板】普通平衡树题解

    [洛谷P3369][模板]普通平衡树题解 题目链接 题意: 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3 ...

  6. 洛谷 P1992 不想兜圈的老爷爷 题解

    洛谷 P1992 不想兜圈的老爷爷 题解 题目描述 一位年过古稀的老爷爷在乡间行走 而他不想兜圈子 因为那会使他昏沉 偶然路过小A发扬助人为乐优良传统 带上地图 想知道路况是否一定使他清醒 usqwe ...

  7. BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...

  8. 斜率优化专题1——bzoj 1597 [Usaco2008 Mar] 土地购买 题解

    转载请注明:http://blog.csdn.net/jiangshibiao/article/details/24387147 [原题] 1597: [Usaco2008 Mar]土地购买 Time ...

  9. 洛谷p3384【模板】树链剖分题解

    洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...

随机推荐

  1. iOS SSL Pinning 保护你的 API

    随着互联网的发展,网站全面 https 化已经越来越被重视,做为 App 开发人员,从一开始就让 API 都走 SSL 也是十分必要的.但是光这样就足够了吗? SSL 可以保护线上 API 数据不被篡 ...

  2. OSG-视口&LOD&Imposter

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  3. 使用InstallShield-Limited-Edition制作安装包

    1.打开此网站,进行注册,获取序列码以及下载InstallShield-Limited-Edition 2.安装完成之后,打开VisualStudio,新建项目 3.填写基本应用信息 4.配置相关信息 ...

  4. Java开发工程师(Web方向) - 03.数据库开发 - 第2章.数据库连接池

    第2章--数据库连接池 数据库连接池 一般而言,在实际开发中,往往不是直接使用JDBC访问后端数据库,而是使用数据库连接池的机制去管理数据库连接,来实现对后端数据库的访问. 建立Java应用程序到后端 ...

  5. win7下本地运行spark以及spark.sql.warehouse.dir设置

    SparkSession spark = SparkSession .builder() .master("local[*]") .enableHiveSupport() .con ...

  6. LeetCode 108——将有序数组转化为二叉搜索树

    1. 题目 2. 解答 一棵高度平衡的二叉搜索树意味着根节点的左右子树包含相同数量的节点,也就是根节点为有序数组的中值. 因此,我们将数组的中值作为根节点,然后再递归分别得到左半部分数据转化的左子树和 ...

  7. ServiceStack.Ormlit 使用Insert的时候自增列不会被赋值

    Insert签名是这样的,将第2个参数设置为true就会返回刚插入的自增列ID了,然后可以手工赋值到对象上面去 public static long Insert<T>(this IDbC ...

  8. [leetcode-670-Maximum Swap]

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  9. iostat lsof

    转至:http://www.51testing.com/html/48/202848-242043.html 命令总结: 1. top/vmstat 发现 wa%过高,vmstat b >1: ...

  10. Pipeline组测试说明

    PIPELINE组测试报告 前言:我们组与学霸系统的其他两个小组共同合作开发,组成学霸系统的团体工作.作为学霸系统的一环,我们组起到承上启下的作用,因此,面向群体以及功能实现都是为给下一个组的工作做好 ...