BZOJ4765 普通计算姬(分块+树状数组)
对节点按编号分块。设f[i][j]为修改j号点对第i块的影响,计算f[i][]时dfs一遍即可。记录每一整块的sum。修改时对每一块直接更新sum,同时用dfs序上的树状数组维护子树和。查询时累加整块区间的sum,剩余部分bit上暴力查询。分析一下复杂度。设块大小为k,计算f数组的复杂度为O(n2/k),修改复杂度为O(nm/k+mlogn),查询复杂度O(nm/k+mklogn)。不妨设nm同阶,则k=sqrt(n/logn)时最优,总复杂度O(n·sqrt(nlogn))。然而真的这样的话f空间不够反正直接开sqrt(n)就过了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll unsigned long long
#define N 100010
#define BLOCK 320
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],dfn[N],size[N],root,t,cnt;
int block,num,L[BLOCK],R[BLOCK],pos[N],f[BLOCK][N];
ll sum[BLOCK],tree[N],a[N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void add(int k,int x){while (k<=n) tree[k]+=x,k+=k&-k;}
ll query(int k){ll s=;while (k) s+=tree[k],k-=k&-k;return s;}
void calc(int k,int x,int from,int cnt)
{
if (k>=L[x]&&k<=R[x]) cnt++;
f[x][k]=cnt;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) calc(edge[i].to,x,k,cnt);
}
void dfs(int k,int from)
{
dfn[k]=++cnt;size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from) dfs(edge[i].to,k),size[k]+=size[edge[i].to];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4765.in","r",stdin);
freopen("bzoj4765.out","w",stdout);
const char LL[]="%I64u\n";
#else
const char LL[]="%llu\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
block=sqrt(n);num=(n-)/block+;
for (int i=;i<=num;i++)
{
L[i]=(i-)*block+,R[i]=min(n,i*block);
for (int j=L[i];j<=R[i];j++)
pos[j]=i;
}
for (int i=;i<=n;i++)
{
int x=read(),y=read();
if (!x) root=y;
else addedge(x,y),addedge(y,x);
}
for (int i=;i<=num;i++) calc(root,i,root,);
dfs(root,root);
for (int i=;i<=n;i++) add(dfn[i],a[i]);
for (int i=;i<=n;i++) sum[pos[i]]+=query(dfn[i]+size[i]-)-query(dfn[i]-);
while (m--)
{
int op=read();
if (op==)
{
int x=read(),y=read();
y-=a[x];
add(dfn[x],y);
for (int i=;i<=num;i++) sum[i]+=(ll)f[i][x]*y;
a[x]+=y;
}
else
{
int l=read(),r=read();
ll ans=;
if (pos[l]==pos[r])
{
for (int i=l;i<=r;i++)
ans+=query(dfn[i]+size[i]-)-query(dfn[i]-);
}
else
{
for (int i=pos[l]+;i<pos[r];i++)
ans+=sum[i];
for (int i=l;i<=R[pos[l]];i++)
ans+=query(dfn[i]+size[i]-)-query(dfn[i]-);
for (int i=L[pos[r]];i<=r;i++)
ans+=query(dfn[i]+size[i]-)-query(dfn[i]-);
}
printf(LL,ans);
}
}
return ;
}
BZOJ4765 普通计算姬(分块+树状数组)的更多相关文章
- [BZOJ4765]普通计算姬(分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1725 Solved: 376[Submit][Status][Discus ...
- BZOJ 4765: 普通计算姬 (分块+树状数组)
传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是 ...
- BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]
传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原 ...
- bzoj 4765 普通计算姬(树状数组 + 分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=4765 很nice的一道题啊(可能是因为卡了n久终于做出来了 题意就是给你一棵带点权的有根树,sum( ...
- 【bzoj2141】排队 分块+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
随机推荐
- BZOJ1003_物流运输_KEY
题目传送门 这是一道DP+最短路径的好题. 首先预处理每天每个点的最短路径. 用SPFA进行处理.即cost[i][j]为第i天到底j天的1到M点的最小花费. 就可以水水的DP. 设f[i]为第i天的 ...
- 北京Uber优步司机奖励政策(12月10日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 佛山Uber优步司机奖励政策(12月14日到12月20日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- [并发并行]_[线程模型]_[Pthread线程使用模型之一管道Pipeline]
场景 1.经常在Windows, MacOSX 开发C多线程程序的时候, 经常需要和线程打交道, 如果开发人员的数量不多时, 同时掌握Win32和pthread线程 并不是容易的事情, 而且使用Win ...
- CF 480 E. Parking Lot
CF 480 E. Parking Lot http://codeforces.com/contest/480/problem/E 题意: 给一个n*m的01矩阵,每次可以将一个0修改为1,求最大全0 ...
- linux (rm指令) 及误删除解决
今天在群里看见这一幕: 看到这儿,我们学习一下 这个RM指令 rm命令可以删除一个目录中的一个或多个文件或目录,也可以将某个目录及其下属的所有文件及其子目录均删除掉.对于链接文件,只是删除整个链接文件 ...
- Linux命令应用大词典-第5章 显示文本和文件内容
5.1 cat:显示文本文件 5.2 more:分页显示文本文件 5.3 less:回卷显示文本文件 5.4 head:显示指定文件前若干行 5.5 tail:查看文件末尾数据 5.6 nl:显示文件 ...
- MVC数据的注册及验证简单总结
一.注解 注解是一种通用机制,可以用来向框架注入元数据,同时,框架不只驱动元数据的验证,还可以在生成显示和编辑模型的HTML标记时使用元数据. 二.验证注册的使用 1.Require:属性为Null或 ...
- [JSON].getObj( keyPath )
语法:[JSON].getObj( keyPath ) 返回:[JSON] 说明:返回指定键名路径的JSON对象,指定键名路径不存在时返回空的toJson对象(强烈建议使用 [JSON].exists ...
- JAVA基础学习之路(五)数组的定义及使用
什么是数组:就是一堆相同类型的数据放一堆(一组相关变量的集合) 定义语法: 1.声明并开辟数组 数据类型 数组名[] = new 数据类型[长度]: 2.分布完成 声明数组:数据类型 数组名 [] = ...