hdu 1086 You can Solve a Geometry Problem too (几何)
You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6932 Accepted Submission(s): 3350
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
A test case starting with 0 terminates the input and this test case is not to be processed.
简单数学几何,求n条线段共有几个交点。
//0MS 240K 1146 B C++
#include<stdio.h>
#include<math.h>
struct node{
double x1,y1;
double x2,y2;
}p[];
double Max(double a,double b)
{
return a>b?a:b;
}
double Min(double a,double b)
{
return a<b?a:b;
}
int judge_in(node a,double x,double y)
{
if(x>=Min(a.x1,a.x2)&&x<=Max(a.x1,a.x2)&&y>=Min(a.y1,a.y2)&&y<=Max(a.y1,a.y2))
return ;
return ;
}
int judge(node a,node b)
{
double k1,k2,b1,b2;
if(a.x1==a.x2) k1=;
else k1=(a.y2-a.y1)/(a.x2-a.x1);
if(b.x1==b.x2) k2=;
else k2=(b.y2-b.y1)/(b.x2-b.x1);
if(k1==k2) return ; b1=a.y1-k1*a.x1;
b2=b.y1-k2*b.x1; double x,y;
x=(b2-b1)/(k1-k2);
y=k1*x+b1; if(judge_in(a,x,y) && judge_in(b,x,y)) return ;
return ;
}
int main(void)
{
int n;
while(scanf("%d",&n)!=EOF && n)
{
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&p[i].x1,&p[i].y1,&p[i].x2,&p[i].y2);
int cnt=;
for(int i=;i<n;i++)
for(int j=i+;j<n;j++)
cnt+=judge(p[i],p[j]);
printf("%d\n",cnt);
}
return ;
}
hdu 1086 You can Solve a Geometry Problem too (几何)的更多相关文章
- hdu 1086 You can Solve a Geometry Problem too
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too [线段相交]
题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...
- HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )
链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...
- Hdoj 1086.You can Solve a Geometry Problem too 题解
Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...
- 【HDOJ】1086 You can Solve a Geometry Problem too
数学题,证明AB和CD.只需证明C.D在AB直线两侧,并且A.B在CD直线两侧.公式为:(ABxAC)*(ABxAD)<= 0 and(CDxCA)*(CDxCB)<= 0 #includ ...
- HDU 1086:You can Solve a Geometry Problem too
pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Mem ...
- You can Solve a Geometry Problem too(线段求交)
http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...
随机推荐
- DevExpress TreeList用法总结
http://blog.itpub.net/29251214/viewspace-774395/ http://blog.csdn.net/czp_huster/article/details/501 ...
- 天津Uber优步司机奖励政策(12月28日到12月29日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- #386. 【UNR #3】鸽子固定器
#386. [UNR #3]鸽子固定器 题目链接 官方题解 分析: 神奇的做法+链表. 首先按照大小排序. 对于小于选择小于m个物品的时候,这个m个物品一定是一段连续的区间.因为,如果中间空着一个物品 ...
- 单目、双目和RGB-D视觉SLAM初始化比较
无论单目.双目还是RGB-D,首先是将从摄像头或者数据集中读入的图像封装成Frame类型对象: 首先都需要将彩色图像处理成灰度图像,继而将图片封装成帧. (1) 单目 mCurrentFrame = ...
- Docker介绍及安装
Docker介绍 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制, ...
- redis 学习笔记二
redis启动: 直接 redis-server.exe 启动服务,是按照redis默认配置启动的,如果想按照自己的配置文件启动,要加上 redis-server.exe redis.windows ...
- KubeCon深度洞察 | KubeEdge开源首秀
以下内容根据华为云DJ在KubeCon Shanghai Demo Session演讲实录整理而成. KubeEdge Demo Show 11月15日上午Huawei宣布了KubeEdge项目开源, ...
- Kotlin Android Extensions: 与 findViewById 说再见 (KAD 04) -- 更新版
作者:Antonio Leiva 时间:Aug 16, 2017 原文链接:https://antonioleiva.com/kotlin-android-extensions/ 在 Kotlin1. ...
- Java 递归 反射 正则表达式
一 递归 1. 就是函数自身调用自身 (就是在栈内存中不断的加载同一个函数) 2. 什么时候用递归呢? 当一个功能被重复使用 而每一次使用该功能时的参数不确定 都由上次的功能元素结果来确定 简单说: ...
- 【递归入门】组合+判断素数:dfs(递归)
题目描述 已知 n 个整数b1,b2,…,bn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和. 例如当 n=4,k=3,4 个整数分别为 3,7,12, ...