BZOJ4337:[BJOI2015]树的同构(树hash)
Description
Input
Output
Sample Input
4 0 1 1 2
4 2 0 2 3
4 0 1 1 1
4 0 1 2 3
Sample Output
1
3
1
HINT
Solution
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#define LL long long
#define MOD (998244353)
using namespace std; struct Edge{int to,next;}edge[];
LL T,n,x,ans,hash[],val[];
int head[],num_edge;
map<LL,LL>Map; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Dfs(int x,int fa)
{
LL q[],tot=;
hash[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
Dfs(edge[i].to,x),q[++tot]=hash[edge[i].to];
if (tot==){hash[x]=; return;}
sort(q+,q+tot+);
for (int i=; i<=tot; ++i)
hash[x]=(hash[x]+q[i]*val[i])%MOD;
} int main()
{
for (int i=; i<=; ++i)
val[i]=rand()*233473ll+rand()*19260817ll+rand();
scanf("%d",&T);
for (int t=; t<=T; ++t)
{
scanf("%d",&n);
memset(head,,sizeof(head)); num_edge=;
for (int i=; i<=n; ++i)
{
scanf("%d",&x);
if (!x) continue;
add(x,i), add(i,x);
}
ans=;
for (int i=; i<=n; ++i)
{
Dfs(i,-);
if (!Map[hash[i]]) Map[hash[i]]=t;
else Map[hash[i]]=min(Map[hash[i]],(LL)t);
ans=min(ans,Map[hash[i]]);
}
printf("%lld\n",ans);
}
}
BZOJ4337:[BJOI2015]树的同构(树hash)的更多相关文章
- bzoj4337: BJOI2015 树的同构 树哈希判同构
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...
- [BZOJ4337][BJOI2015]树的同构(树的最小表示法)
4337: BJOI2015 树的同构 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1023 Solved: 436[Submit][Status ...
- BZOJ 4337: BJOI2015 树的同构 树hash
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...
- BZOJ.4337.[BJOI2015]树的同构(树哈希)
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...
- [BJOI2015]树的同构 && 树哈希教程
题目链接 有根树的哈希 离散数学中对树哈希的描述在这里.大家可以看看. 判断有根树是否同构,可以考虑将有根树编码.而编码过程中,要求保留树形态的特征,同时忽略子树顺序的不同.先来看一看这个方法: 不妨 ...
- BZOJ4337 树的同构 (树哈希)(未完成)
样例迷,没过 交了30pts #include <cstdio> #include <iostream> #include <cstring> #include & ...
- 【BZOJ4337】BJOI2015 树的同构 括号序列
[BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...
- 刷题总结——树的同构(bzoj4337 树上hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...
- BZOJ4337:[BJOI2015]树的同构——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4337 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根, ...
随机推荐
- kd-tree 小结
核心思想 是一种分割 \(k\) 维数据空间的数据结构 一维情况下就是平衡树,以 \(key\) 为标准判断插入左儿子还是右儿子 \(kdtree\) 就是平衡树在多维空间的扩展 因为有多维,我们按不 ...
- C# 连接Oracle,进行查询,插入操作
注:OracleConnection和OracleCommand已被标注为[弃用的],可以使用System.Data.OleDb.OleDbConnection代替OracleCOnnection,使 ...
- NetMQ:.NET轻量级消息队列
前言 首先我现在是在一家游戏工作做服务端的,这几天我们服务端游戏做了整个底层框架的替换,想必做过游戏的也都知道,在游戏里面会有很多的日志需要记录,量也是比较大的:在没有换框架之前我们存日志和游戏运行都 ...
- 七、集成swagger2
1.添加依赖 <!-- swager2 --> <dependency> <groupId>io.springfox</groupId> <art ...
- 关于request请求的基本获取
1.Request对象的作用是与客户端交互,收集客户端的Form.Cookies.超链接,或者收集服务器端的环境变量. request对象是从客户端向服务器发出请求,包括用户提交的信息以及客户端的 ...
- UVA 10328(DP,大数,至少连续)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19825 这道题和http://www.cnblogs.com/qlky/p/ ...
- Git错误解决(windows版本下的Git Shell)
第一个问题:怎么也不能将自己本地仓库代码pull到GitHub网站上? git push origin master Warning: Permanently added 'github.com,19 ...
- 第4章 css文字text与字体font-face
text-overflow 与 word-wrap text-overflow:用来设置是否使用一个省略标记(...)标示对象内文本的溢出. 语法: 但是text-overflow只是用来说明文字溢出 ...
- 响应式(2)——bootstrap的响应式
<meta name="viewport" content="width=device-width,user-scalable=no"/> < ...
- centos7编译安装git最新版
假如系统已经安装了git,先删除. 如果是通过yum安装的,直接在终端使用以下指令删除: yum remove git 如果是通过源码编译安装的,参考以下文章: Linux ./configure & ...