【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]
树点涂色
Time Limit: 10 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5
Sample Output
4
2
2
HINT
Solution
我们将边两端的点颜色相同的边设为实边,不同的设为虚边。那么一次新增颜色的操作显然就是LCT的access操作!access的时候恰是虚边和实边的转换。
那么我们只要用线段树维护每个点到根的贡献,结合dfs序来实现子树加,每次在LCT进行access的时候进行+-1修改,然后询问的时候用区间求和,区间最值求得答案即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = 2e5+; int n,m;
int x,y,P;
int POS[ONE],POSCNT;
int pos[ONE],dfn_cnt,size[ONE],dfn[ONE];
int Dep[ONE],son[ONE],Top[ONE];
int lc[ONE],rc[ONE],fa[ONE],fat[ONE];
int res_max,res_value; inline int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} namespace tree
{
int next[ONE],first[ONE],go[ONE],tot=; void Add(int u,int v)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v;
next[++tot]=first[v]; first[v]=tot; go[tot]=u;
} void Dfs(int u,int father)
{
pos[u] = ++dfn_cnt; dfn[dfn_cnt] = u;
size[u] = ;
Dep[u] = Dep[father] + ;
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(v==father) continue;
fa[v] = u; fat[v] = u;
Dfs(v,u);
size[u] += size[v];
if(size[v] > size[son[u]]) son[u] = v;
}
} void Dfs_twice(int u,int father)
{
POS[u] = ++POSCNT;
if(son[u])
{
int v=son[u];
Top[v] = Top[u];
Dfs_twice(v,u);
} for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(v==father || v==son[u]) continue;
Top[v] = v;
Dfs_twice(v,u);
}
} int LCA(int x,int y)
{
while(Top[x]!=Top[y])
{
if( Dep[Top[x]] < Dep[Top[y]] ) swap(x,y);
x = fat[Top[x]];
}
if(POS[x] > POS[y]) swap(x,y);
return x;
}
} namespace Seg
{
struct power
{
int add,value;
int maxx;
}Node[ONE*]; void pushdown(int i,int Q)
{
if(Node[i].add)
{
Node[i<<].add += Node[i].add;
Node[i<<|].add += Node[i].add;
Node[i<<].maxx += Node[i].add;
Node[i<<|].maxx += Node[i].add;
Node[i<<].value += Node[i].add * (Q-Q/);
Node[i<<|].value += Node[i].add * (Q/);
Node[i].add = ;
}
} void Build(int i,int l,int r)
{
if(l==r)
{
Node[i].value = Dep[dfn[l]];
Node[i].maxx = Dep[dfn[l]];
return ;
}
int mid = l+r>>;
Build(i<<,l,mid); Build(i<<|,mid+,r);
Node[i].value = Node[i<<].value + Node[i<<|].value;
Node[i].maxx = max(Node[i<<].maxx, Node[i<<|].maxx);
} void Update(int i,int l,int r,int L,int R,int x)
{
if(L<=l && r<=R)
{
Node[i].add += x;
Node[i].value += (r-l+)*x;
Node[i].maxx += x;
return;
}
pushdown(i,r-l+);
int mid = l+r>>;
if(L<=mid) Update(i<<,l,mid,L,R,x);
if(mid+<=R) Update(i<<|,mid+,r,L,R,x); Node[i].value = Node[i<<].value + Node[i<<|].value;
Node[i].maxx = max(Node[i<<].maxx , Node[i<<|].maxx);
} void Query(int i,int l,int r,int L,int R)
{
if(L<=l && r<=R)
{
res_max = max(res_max,Node[i].maxx);
res_value += Node[i].value;
return;
}
pushdown(i,r-l+);
int mid = l+r>>;
if(L<=mid) Query(i<<,l,mid,L,R);
if(mid+<=R) Query(i<<|,mid+,r,L,R);
}
} namespace LCT
{
int is_real(int x)
{
return (lc[fa[x]]==x || rc[fa[x]]==x);
} void Turn(int x)
{
int y = fa[x], z = fa[y];
int b = x==lc[y] ? rc[x]:lc[x]; fa[x] = z; fa[y] = x;
if(b) fa[b] = y; if(z)
{
if(y == lc[z]) lc[z] = x;
else
if(y == rc[z]) rc[z] = x;
} if(x==lc[y]) rc[x]=y,lc[y]=b;
else lc[x]=y,rc[y]=b;
} void Splay(int x)
{
while(is_real(x))
{
if(is_real(fa[x]))
{
if( (lc[fa[x]]==x) == (lc[fa[fa[x]]]==fa[x])) Turn(fa[x]);
else Turn(x);
}
Turn(x);
}
} int find_root(int x)
{
while(lc[x]) x=lc[x];
return x;
} void access(int x)
{
for(int p=x,q=; p; q=p,p=fa[p])
{
Splay(p);
if(rc[p])
{
int N = find_root(rc[p]);
Seg::Update(,,n,pos[N],pos[N]+size[N]-,);
} rc[p] = q;
if(rc[p])
{
int N = find_root(rc[p]);
Seg::Update(,,n,pos[N],pos[N]+size[N]-,-);
}
}
}
} int Getsum(int x,int y)
{
int Ans, Sx, Sy, SLCA, LCA;
LCA = tree::LCA(x,y);
x=pos[x], y=pos[y], LCA=pos[LCA];
res_value = ; Seg::Query(,,n,x,x); Sx = res_value;
res_value = ; Seg::Query(,,n,y,y); Sy = res_value;
res_value = ; Seg::Query(,,n,LCA,LCA); SLCA = res_value;
return Sx+Sy-*SLCA+;
} int Getmax(int x)
{
res_max = ;
Seg::Query(,,n,pos[x],pos[x]+size[x]-);
return res_max;
} int main()
{
n=get(); m=get();
for(int i=;i<=n-;i++)
{
x=get(); y=get();
tree::Add(x,y);
} tree::Dfs(,);
Top[] = , tree::Dfs_twice(,);
Seg::Build(,,n); while(m--)
{
P = get(); x=get();
if(P==)
LCT::access(x);
if(P==)
y=get(), printf("%d\n",Getsum(x,y));
if(P==)
printf("%d\n",Getmax(x));
}
}
【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]的更多相关文章
- 【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树
[BZOJ4817][Sdoi2017]树点涂色 Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路 ...
- [Sdoi2017]树点涂色 [lct 线段树]
[Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...
- [SDOI2017][bzoj4817] 树点涂色 [LCT+线段树]
题面 传送门 思路 $LCT$ 我们发现,这个1操作,好像非常像$LCT$里面的$Access$啊~ 那么我们尝试把$Access$操作魔改成本题中的涂色 我们令$LCT$中的每一个$splay$链代 ...
- BZOJ4817[Sdoi2017]树点涂色——LCT+线段树
题目描述 Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色.Bob可能会进 ...
- bzoj4817 & loj2001 [Sdoi2017]树点涂色 LCT + 线段树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4817 https://loj.ac/problem/2001 题解 可以发现这个题就是 bzo ...
- BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)
题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...
- 【bzoj4817】树点涂色 LCT+线段树+dfs序
Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...
- BZOJ 4817 [Sdoi2017]树点涂色 ——LCT 线段树
同BZOJ3779. SDOI出原题,还是弱化版的. 吃枣药丸 #include <map> #include <cmath> #include <queue> # ...
- BZOJ 4817: [Sdoi2017]树点涂色(lct+线段树)
传送门 解题思路 跟重组病毒这道题很像.只是有了一个询问\(2\)的操作,然后询问\(2\)的答案其实就是\(val[x]+val[y]-2*val[lca(x,y)]+1\)(画图理解).剩下的操作 ...
随机推荐
- Java常用类之Math类
Java 的常用类Math类: java.lang.Math 提供了系列的静态方法用于科学计算,其方法的参数和返回值类型一般为 double 类型. 如: 1. public static final ...
- ACM 第十七天
暑期热身赛 BAPC 2014 The 2014 Benelux Algorithm Programming Contest 题目网址:https://odzkskevi.qnssl.com/3655 ...
- Uncaught ReferenceError: wx is not defined
程序的分享功能调用了微信的接口,但是忽然发现就报这个错误, Uncaught ReferenceError: wx is not defined 同时下方还有这个错误 This content sho ...
- PokeCats开发者日志(十三)
现在是PokeCats游戏开发的第六十二天的晚上,把软著权登记证书的截图加上,又重新提交审核了一遍,但愿能过吧...
- 重新看《JavaScript高级程序设计》
几点心得: 1)数据是基础,一共有3种基础数据:null.undefined.和object:遵循从无到有从简单到复杂的演变过程 2)衍生数据:衍生数据是指操作符合语句,这些是基础数据产生导致的必然结 ...
- LoadRunner中执行命令行
在LoadRunner可以使用函数system()来调用系统指令,结果同在批处理里执行一样,但是system()有个缺陷:无法获取命令的返回结果. 也许可以用`echo command > fi ...
- 修改CSV中的某些值
file.csv文件如下,然后对其中某些值进行变换操作,刚学Powershell的时候操作起来很麻烦,现在看来其实就是对于哈希表的操作. col1,col2,col3,col4 text1,text2 ...
- Chromium之工程类别
虽然有700多个project,其实有很多是不成声二进制执行文件的,他们主要是调用cygwin的环境,执行一些python的脚本. 具体这个.py文件做了哪些共工作,还要再研究,目前看到有打包一些.p ...
- Python爬虫requests判断请求超时并重新发送请求
下面是简单的一个重复请求过程,更高级更简单的请移步本博客: https://www.cnblogs.com/fanjp666888/p/9796943.html 在爬虫的执行当中,总会遇到请求连接 ...
- matlab edge
edge在matlab中用来进行边缘检测BW = edge(I) 采用灰度或一个二值化图像I作为它的输入,并返回一个与I相同大小的二值化图像BW,在函数检测到边缘的地方为1,其他地方为0. BW = ...