大数据处理——Trie树

1.1、什么是Trie树

  Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。
  Trie的核心思想是空间换时间。利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的。

它有3个基本性质:
  1. 根节点不包含字符,除根节点外每一个节点都只包含一个字符。
  2. 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。
  3. 每个节点的所有子节点包含的字符都不相同。

1.2、树的构建

举个在网上流传颇广的例子,如下:
  题目:给你100000个长度不超过10的单词。对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位置。
  分析:这题当然可以用hash来解决,但是本文重点介绍的是trie树,因为在某些方面它的用途更大。比如说对于某一个单词,我们要询问它的前缀是否出现过。这样hash就不好搞了,而用trie还是很简单。
  现在回到例子中,如果我们用最傻的方法,对于每一个单词,我们都要去查找它前面的单词中是否有它。那么这个算法的复杂度就是O(n2 )。显然对于100000的范围难以接受。现在我们换个思路想。假设我要查询的单词是abcd,那么在他前面的单词中,以b,c,d,f之类开头的我显然不必考虑。而只要找以a开头的中是否存在abcd就可以了。同样的,在以a开头中的单词中,我们只要考虑以b作为第二个字母的,一次次缩小范围和提高针对性,这样一个树的模型就渐渐清晰了。
  好比假设有b,abc,abd,bcd,abcd,efg,hii 这6个单词,我们构建的树就是如下图这样的:

  当时第一次看到这幅图的时候,便立马感到此树之不凡构造了。单单从上幅图便可窥知一二,好比大海搜人,立马就能确定东南西北中的到底哪个方位,如此迅速缩小查找的范围和提高查找的针对性,不失为一创举。
  ok,如上图所示,对于每一个节点,从根遍历到他的过程就是一个单词,如果这个节点被标记为红色,就表示这个单词存在,否则不存在。
  那么,对于一个单词,我只要顺着他从根走到对应的节点,再看这个节点是否被标记为红色就可以知道它是否出现过了。把这个节点标记为红色,就相当于插入了这个单词。
  这样一来我们查询和插入可以一起完成,所用时间仅仅为单词长度,在这一个样例,便是10。
  我们可以看到,trie树每一层的节点数是26i 级别的。所以为了节省空间。我们用动态链表,或者用数组来模拟动态。空间的花费,不会超过单词数×单词长度。

1.3、前缀查询

  已知n个由小写字母构成的平均长度为10的单词,判断其中是否存在某个串为另一个串的前缀子串。下面对比3种方法:
  最容易想到的:即从字符串集中从头往后搜,看每个字符串是否为字符串集中某个字符串的前缀,复杂度为O(n2)。
  使用hash:我们用hash存下所有字符串的所有的前缀子串,建立存有子串hash的复杂度为O(n*len),而查询的复杂度为O(n)* O(1)= O(n)
  使用trie:因为当查询如字符串abc是否为某个字符串的前缀时,显然以b,c,d....等不是以a开头的字符串就不用查找了。所以建立trie的复杂度为O(n*len),而建立+查询在trie中是可以同时执行的,建立的过程也就可以成为查询的过程,hash就不能实现这个功能。所以总的复杂度为O(n*len),实际查询的复杂度也只是O(len)。(说白了,就是Trie树的平均高度h为len,所以Trie树的查询复杂度为O(h)=O(len)。好比一棵二叉平衡树的高度为logN,则其查询,插入的平均时间复杂度亦为O(logN))。

1.4、查询

  Trie树是简单但实用的数据结构,通常用于实现字典查询。我们做即时响应用户输入的AJAX搜索框时,就是Trie开始。本质上,Trie是一颗存储多个字符串的树。相邻节点间的边代表一个字符,这样树的每条分支代表一则子串,而树的叶节点则代表完整的字符串。和普通树不同的地方是,相同的字符串前缀共享同一条分支。下面,再举一个例子。给出一组单词,inn, int, at, age, adv, ant, 我们可以得到下面的Trie:

可以看出:
  每条边对应一个字母。
  每个节点对应一项前缀。叶节点对应最长前缀,即单词本身。
  单词inn与单词int有共同的前缀“in”, 因此他们共享左边的一条分支,root->i->in。同理,ate, age, adv, 和ant共享前缀"a",所以他们共享从根节点到节点"a"的边。

  查询操纵非常简单。比如要查找int,顺着路径i -> in -> int就找到了。

  搭建Trie的基本算法也很简单,无非是逐一把每则单词的每个字母插入Trie。插入前先看前缀是否存在。如果存在,就共享,否则创建对应的节点和边。比如要插入单词add,就有下面几步:
  1. 考察前缀"a",发现边a已经存在。于是顺着边a走到节点a。
  2. 考察剩下的字符串"dd"的前缀"d",发现从节点a出发,已经有边d存在。于是顺着边d走到节点ad
  3. 考察最后一个字符"d",这下从节点ad出发没有边d了,于是创建节点ad的子节点add,并把边ad->add标记为d。

1.5、Trie树的应用

第一:词频统计;第二: 前缀匹配;第三:去重

  适用范围:数据量大,重复多,但是数据种类小可以放入内存
  基本原理及要点:实现方式,节点孩子的表示方式
  扩展:压缩实现。

面试题有:

  1. 有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。

  2. 1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

  3. 寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

  4. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

    用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度),然后是找出出现最频繁的前10个词,可以用堆来实现。

  5. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

    每个结点增加个count变量,查询、插入时维护count变量进行词频统计,用一个最小堆进行维护最高频的100个词的频率

  6. 寻找热门查询:
    搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。
    (1) 请描述你解决这个问题的思路;
    (2) 请给出主要的处理流程,算法,以及算法的复杂度。

http://www.frankyang.cn/2017/08/21/trie-tree/

大数据处理-Trie树的更多相关文章

  1. Trie树(代码),后缀树(代码)

    Trie树系列 Trie字典树 压缩的Trie 后缀树Suffix tree 后缀树--ukkonen算法 Trie是通过对字符串进行预先处理,达到加快搜索速度的算法.即把文本中的字符串转换为树结构, ...

  2. Trie树的常见应用大总结(面试+附代码实现)

    (一)Trie的简单介绍 Trie树,又称字典树,单词查找树或者前缀树.是一种用于高速检索的多叉树结构,如英文字母的字典树是一个26叉树.数字的字典树是一个10叉树. 他的核心思想是空间换时间,空间消 ...

  3. trie树(前缀树)

    问题描述:   Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优 ...

  4. 从Trie树(字典树)谈到后缀树

    转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...

  5. C++大数据处理

    转:http://blog.csdn.net/v_july_v/article/details/7382693 作者:July出处:结构之法算法之道blog 前言 一般而言,标题含有“秒杀”,“99% ...

  6. [算法]从Trie树(字典树)谈到后缀树

    我是好文章的搬运工,原文来自博客园,博主July_,地址:http://www.cnblogs.com/v-July-v/archive/2011/10/22/2316412.html 从Trie树( ...

  7. 数据结构与算法—Trie树

    Trie,又经常叫前缀树,字典树等等.它有很多变种,如后缀树,Radix Tree/Trie,PATRICIA tree,以及bitwise版本的crit-bit tree.当然很多名字的意义其实有交 ...

  8. 基于trie树的具有联想功能的文本编辑器

    之前的软件设计与开发实践课程中,自己构思的大作业题目.做的具有核心功能,但是还欠缺边边角角的小功能和持久化数据结构,先放出来,有机会一点点改.github:https://github.com/chu ...

  9. [转]双数组TRIE树原理

    原文名称: An Efficient Digital Search Algorithm by Using a Double-Array Structure 作者: JUN-ICHI AOE 译文: 使 ...

随机推荐

  1. java 中PriorityQueue优先级队列使用方法

    1.前言 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果想实现按照自己的意愿进行优 ...

  2. [Python爬虫] Selenium +phantomjs 模拟下拉滚动条

    在爬虫中,有时会遇到这种情况,数据的展示是不是一页一页的,而是通过不断的下拉滚动条来加载数据.例如一点咨询(http://www.yidianzixun.com/)和微博(在未登录的状态下:http: ...

  3. DataBase 之 拉链表结构设计

    一.概念 拉链表是针对数据仓库设计中表存储数据的方式而定义的,顾名思义,所谓拉链,就是记录历史.记录一个事物从开始,一直到当前状态的所有变化的信息. 在历史表中对客户的一生的记录可能就这样几条记录,避 ...

  4. windows系统中常用的快捷键

    开发中,一些常用的键盘技巧: (1)快速切换桌面(alt+tab)或者是(window+tab) (2)迅速关闭当前页面 (3)迅速收起所有页面 (4)直接回到桌面页面 (5)锁定你的屏幕

  5. 重载<<和>>

    在C++编程中实现数据的输入/输出能够用cin>>ch/cout<<ch; 可是使用cin>>ch或cout<<ch并不能实现一些特殊的数据的输入或者输 ...

  6. ubuntu14.04无法连接有线连接问题

    在windows系统下关闭有线网卡的关机,自动唤醒功能即可

  7. git for c#, clone方法

    private static void clone() { string wkDir = @"E:\DotNet2010\单位project\Git.Client\lib2Test\Cons ...

  8. jQuery上传插件Uploadify使用介绍

    以图纸资料上传为例,介绍Uploadify插件的使用,插件下载地址   http://www.uploadify.com/download/ 上传页面: 选择文件增加未上传界面: 上传成功预览界面: ...

  9. 《将一个字符串转换成datetime时,先分析该字符串以获取日期,然后再将每个变量放置到datetime对象中》的解决办法

    我们在写代码时,稍不注意就收到VS那文不对题的错误提示. 最近在项目上碰到了“将一个字符串转换成datetime时,先分析该字符串以获取日期,然后再将每个变量放置到datetime对象中”的这个错误提 ...

  10. IIS7如何部署asp.net网站 (asp.net mvc 5 , asp.net 4.5 , asp.net 4.0 都可以 )

      第一步:发布网站 右键asp.net web项目,选择发布, 然后新建配置文件名称并选择 "文件系统" 发布方法. 目标位置选择本地新建的文件夹如: IISWebSite 第二 ...