接上《Metrics-Java版的指标度量工具之一

4.       Histograms

Histograms主要使用来统计数据的分布情况,最大值、最小值、平均值、中位数,百分比(75%、90%、95%、98%、99%和99.9%)。例如,需要统计某个页面的请求响应时间分布情况,可以使用该种类型的Metrics进行统计。具体的样例代码如下:

package com.netease.test.metrics;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.Histogram;
import com.codahale.metrics.MetricRegistry; import java.util.Random;
import java.util.concurrent.TimeUnit; import static com.codahale.metrics.MetricRegistry.name; /**
* User: hzwangxx
* Date: 14-2-17
* Time: 18:34
* 测试Histograms
*/
public class TestHistograms {
/**
* 实例化一个registry,最核心的一个模块,相当于一个应用程序的metrics系统的容器,维护一个Map
*/
private static final MetricRegistry metrics = new MetricRegistry(); /**
* 在控制台上打印输出
*/
private static ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics).build(); /**
* 实例化一个Histograms
*/
private static final Histogram randomNums = metrics.histogram(name(TestHistograms.class, "random")); public static void handleRequest(double random) {
randomNums.update((int) (random*100));
} public static void main(String[] args) throws InterruptedException {
reporter.start(3, TimeUnit.SECONDS);
Random rand = new Random();
while(true){
handleRequest(rand.nextDouble());
Thread.sleep(100);
}
} } /*
14-2-17 19:39:11 =============================================================== -- Histograms ------------------------------------------------------------------
com.netease.test.metrics.TestHistograms.random
count = 30
min = 1
max = 97
mean = 45.93
stddev = 29.12
median = 39.50
75% <= 71.00
95% <= 95.90
98% <= 97.00
99% <= 97.00
99.9% <= 97.00 14-2-17 19:39:14 =============================================================== -- Histograms ------------------------------------------------------------------
com.netease.test.metrics.TestHistograms.random
count = 60
min = 0
max = 97
mean = 41.17
stddev = 28.60
median = 34.50
75% <= 69.75
95% <= 92.90
98% <= 96.56
99% <= 97.00
99.9% <= 97.00 14-2-17 19:39:17 =============================================================== -- Histograms ------------------------------------------------------------------
com.netease.test.metrics.TestHistograms.random
count = 90
min = 0
max = 97
mean = 44.67
stddev = 28.47
median = 43.00
75% <= 71.00
95% <= 91.90
98% <= 96.18
99% <= 97.00
99.9% <= 97.00
*/

5.       Timers

Timers主要是用来统计某一块代码段的执行时间以及其分布情况,具体是基于Histograms和Meters来实现的。样例代码如下:

package com.netease.test.metrics;

import com.codahale.metrics.ConsoleReporter;
import com.codahale.metrics.MetricRegistry;
import com.codahale.metrics.Timer; import java.util.Random;
import java.util.concurrent.TimeUnit; import static com.codahale.metrics.MetricRegistry.name; /**
* User: hzwangxx
* Date: 14-2-17
* Time: 18:34
* 测试Timers
*/
public class TestTimers {
/**
* 实例化一个registry,最核心的一个模块,相当于一个应用程序的metrics系统的容器,维护一个Map
*/
private static final MetricRegistry metrics = new MetricRegistry(); /**
* 在控制台上打印输出
*/
private static ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics).build(); /**
* 实例化一个Meter
*/
// private static final Timer requests = metrics.timer(name(TestTimers.class, "request"));
private static final Timer requests = metrics.timer(name(TestTimers.class, "request")); public static void handleRequest(int sleep) {
Timer.Context context = requests.time();
try {
//some operator
Thread.sleep(sleep);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
context.stop();
} } public static void main(String[] args) throws InterruptedException {
reporter.start(3, TimeUnit.SECONDS);
Random random = new Random();
while(true){
handleRequest(random.nextInt(1000));
}
} } /*
14-2-18 9:31:54 ================================================================ -- Timers ----------------------------------------------------------------------
com.netease.test.metrics.TestTimers.request
count = 4
mean rate = 1.33 calls/second
1-minute rate = 0.00 calls/second
5-minute rate = 0.00 calls/second
15-minute rate = 0.00 calls/second
min = 483.07 milliseconds
max = 901.92 milliseconds
mean = 612.64 milliseconds
stddev = 196.32 milliseconds
median = 532.79 milliseconds
75% <= 818.31 milliseconds
95% <= 901.92 milliseconds
98% <= 901.92 milliseconds
99% <= 901.92 milliseconds
99.9% <= 901.92 milliseconds 14-2-18 9:31:57 ================================================================ -- Timers ----------------------------------------------------------------------
com.netease.test.metrics.TestTimers.request
count = 8
mean rate = 1.33 calls/second
1-minute rate = 1.40 calls/second
5-minute rate = 1.40 calls/second
15-minute rate = 1.40 calls/second
min = 41.07 milliseconds
max = 968.19 milliseconds
mean = 639.50 milliseconds
stddev = 306.12 milliseconds
median = 692.77 milliseconds
75% <= 885.96 milliseconds
95% <= 968.19 milliseconds
98% <= 968.19 milliseconds
99% <= 968.19 milliseconds
99.9% <= 968.19 milliseconds 14-2-18 9:32:00 ================================================================ -- Timers ----------------------------------------------------------------------
com.netease.test.metrics.TestTimers.request
count = 15
mean rate = 1.67 calls/second
1-minute rate = 1.40 calls/second
5-minute rate = 1.40 calls/second
15-minute rate = 1.40 calls/second
min = 41.07 milliseconds
max = 968.19 milliseconds
mean = 591.35 milliseconds
stddev = 302.96 milliseconds
median = 650.56 milliseconds
75% <= 838.07 milliseconds
95% <= 968.19 milliseconds
98% <= 968.19 milliseconds
99% <= 968.19 milliseconds
99.9% <= 968.19 milliseconds */

Health Checks

Metrics提供了一个独立的模块:Health Checks,用于对Application、其子模块或者关联模块的运行是否正常做检测。该模块是独立metrics-core模块的,使用时则导入metrics-healthchecks包。

<dependency>
<groupId>com.codahale.metrics</groupId>
<artifactId>metrics-healthchecks</artifactId>
<version>3.0.1</version>
</dependency>

使用起来和与上述几种类型的Metrics有点类似,但是需要重新实例化一个Metrics容器HealthCheckRegistry,待检测模块继承抽象类HealthCheck并实现check()方法即可,然后将该模块注册到HealthCheckRegistry中,判断的时候通过isHealthy()接口即可。如下示例代码:

package com.netease.test.metrics;

import com.codahale.metrics.health.HealthCheck;
import com.codahale.metrics.health.HealthCheckRegistry; import java.util.Map;
import java.util.Random; /**
* User: hzwangxx
* Date: 14-2-18
* Time: 9:57
*/
public class DatabaseHealthCheck extends HealthCheck{
private final Database database; public DatabaseHealthCheck(Database database) {
this.database = database;
} @Override
protected Result check() throws Exception {
if (database.ping()) {
return Result.healthy();
}
return Result.unhealthy("Can't ping database.");
} /**
* 模拟Database对象
*/
static class Database {
/**
* 模拟database的ping方法
* @return 随机返回boolean值
*/
public boolean ping() {
Random random = new Random();
return random.nextBoolean();
}
} public static void main(String[] args) {
// MetricRegistry metrics = new MetricRegistry();
// ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics).build();
HealthCheckRegistry registry = new HealthCheckRegistry();
registry.register("database1", new DatabaseHealthCheck(new Database()));
registry.register("database2", new DatabaseHealthCheck(new Database()));
while (true) {
for (Map.Entry<String, Result> entry : registry.runHealthChecks().entrySet()) {
if (entry.getValue().isHealthy()) {
System.out.println(entry.getKey() + ": OK");
} else {
System.err.println(entry.getKey() + ": FAIL, error message: " + entry.getValue().getMessage());
final Throwable e = entry.getValue().getError();
if (e != null) {
e.printStackTrace();
}
}
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) { }
}
}
} /*
console output:
database1: OK
database2: FAIL, error message: Can't ping database.
database1: FAIL, error message: Can't ping database.
database2: OK
database1: OK
database2: FAIL, error message: Can't ping database.
database1: FAIL, error message: Can't ping database.
database2: OK
database1: FAIL, error message: Can't ping database.
database2: FAIL, error message: Can't ping database.
database1: FAIL, error message: Can't ping database.
database2: FAIL, error message: Can't ping database.
database1: OK
database2: OK
database1: OK
database2: FAIL, error message: Can't ping database.
database1: FAIL, error message: Can't ping database.
database2: OK
database1: OK
database2: OK
database1: FAIL, error message: Can't ping database.
database2: OK
database1: OK
database2: OK
database1: OK
database2: OK
database1: OK
database2: FAIL, error message: Can't ping database.
database1: FAIL, error message: Can't ping database.
database2: FAIL, error message: Can't ping database. */

其他支持

metrics提供了对Ehcache、Apache HttpClient、JDBI、Jersey、Jetty、Log4J、Logback、JVM等的集成,可以方便地将Metrics输出到Ganglia、Graphite中,供用户图形化展示。

参考资料

http://metrics.codahale.com/

https://github.com/dropwizard/metrics

http://blog.csdn.net/scutshuxue/article/details/8350135

http://blog.synyx.de/2013/09/yammer-metrics-made-easy-part-i/

http://blog.synyx.de/2013/09/yammer-metrics-made-easy-part-ii/

http://wiki.apache.org/hadoop/HADOOP-6728-MetricsV2

Metrics-Java版的指标度量工具之二的更多相关文章

  1. Metrics-Java版的指标度量工具之一

    Metrics是一个给JAVA服务的各项指标提供度量工具的包,在JAVA代码中嵌入Metrics代码,可以方便的对业务代码的各个指标进行监控,同时,Metrics能够很好的跟Ganlia.Graphi ...

  2. Metrics-Java版的指标度量工具

    介绍 Metrics是一个给JAVA服务的各项指标提供度量工具的包,在JAVA代码中嵌入Metrics代码,可以方便的对业务代码的各个指标进行监控,同时,Metrics能够很好的跟Ganlia.Gra ...

  3. as3+java+mysql(mybatis) 数据自动工具(二)

    AutoScript 项目结构如下图 ---AutoScript.java 为程序入口 ---com.autoscript.object 同步 as3 和 java 的数据类 ---com.autos ...

  4. 数据结构Java版之深度优先-图(十二)

    这里用深度优先遍历存在矩阵里面的图. 深度优先利用的是栈的FIFO特性.为此遍历到底后,可以找到最相邻的节点继续遍历.实现深度优先,还需要在节点加上一个访问标识,来确定该节点是否已经被访问过了. 源码 ...

  5. Java代码质量度量工具大阅兵

    FindBugs FindBugs, a program which uses static analysis to look for bugs in Java code. It is free so ...

  6. JAVA Metrics 度量工具使用介绍1

    Java Metric使用介绍1 Metrics是一个给JAVA提供度量工具的包,在JAVA代码中嵌入Metrics代码,可以方便的对业务代码的各个指标进行监控,同一时候,Metrics可以非常好的跟 ...

  7. java版MD5签名工具类

    package com.net.util; import java.security.MessageDigest; /** * MD5签名工具类 * @author zhangdi * */ publ ...

  8. 代码度量工具——SourceMonitor的学习和使用

    http://www.cnblogs.com/bangerlee/archive/2011/09/18/2178172.html 引言 我们提倡编写功能单一.结构清晰.接口简单的函数,因为过于复杂的函 ...

  9. JCEF3——谷歌浏览器内核Java版实现(一):使用jawt获取窗体句柄

    前言 最近一段时间研究谷歌浏览器内核.谷歌浏览器内核一直开源,并维护更新,它的开源项目中内核更新速度和Chrome浏览器版本更新进度一样!而且它不同于WebKit(值得一题的是谷歌浏览器已不使用Web ...

随机推荐

  1. How to build the Robotics Library from source code on Windows

    The Robotics Library is an open source C++ library for robot kinematics, motion planning and control ...

  2. Android ContentProvider介绍

    在Android中数据的存储一共有五种形式,分别是:Shared Preferences.网络存储.文件存储,外储存储.SQLite.但是我们知道一般这些存储都只是在单独的一个应用程序之中达到一个数据 ...

  3. 关闭ctrl+shift+d截图

    关闭ctrl+shift+d截图,最近用sublime text3的时候,用ctrl+shift+d,总是跳出来截图,找了半天,原来是百度浏览器的截图功能快捷键是ctrl+shift+d, 关掉即可

  4. Mongodb无法访问28107的问题

    解压mongodb文件后,放到指定文件,最好别有空格.汉字之类的文件中 此时在mongodb文件夹下,建立一个 db 文件夹,此时执行启动命令,默认27017端口号可以打开,但是28017端口无法打开 ...

  5. 用muduo实现memcached协议的例子

    最近花了两天时间用 muduo 部分实现了 memcached 服务器协议,代码位于 examples/memcached/server,能通过 memcached 的大部分测试用例(incr/dec ...

  6. EFM32外设模块—USART V1.00

    http://wenku.baidu.com/link?url=hx-pumUzdpS-AbD1OhEW11Jl6H8wex2DNsv4IcZwrgL-drwuUzZ6E1L64fCnAfdUOObK ...

  7. mysql 中文乱码解决方法

    最近在.NET 项目中用EF连接mysql,插入中文数据时老是显示乱码,在创建表时都已将编码指定了,但是还是出现乱码,折腾了一阵子才发现在连接字符串里面也要加上指定编码 Character Set=u ...

  8. Dojo框架学习笔记<二>

    一.dojo/dom    该模块定义了Dojo Dom API,主要有以下几种用法:    1.dom.byId();(相当于document.getElementById())    ①最直接的用 ...

  9. Centos 6.X基本维护操作

    设置163源,全新最小化安装时,更改源需先yum install wget mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-B ...

  10. Linux netstat命令详解

    Linux netstat命令详解 一  简介 Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多 ...