Microsoft神经网络是迄今为止最强大、最复杂的算法。要想知道它有多复杂,请看SQL Server联机丛书对该算法的说明:“这个算法通过建立多层感知神经元网络,建立分类和回归挖掘模型。与Microsoft决策树算法类似,在给定了可预测属性的每个状态时, Microsoft神经网络算法计算输入属性每个可能状态的概率。然后可以用这些概率根据输入属性预测被预测属性的输出。”
什么时候用这个算法呢?推荐在其他算法无法得出有意义的结果时再用,如提升图输出的结果。我们经常把Microsoft神经网络作为“压箱底”的最后一招,在其他算法处理巨大而复杂的数据集无法得到有意义的结果时才使用它。这个算法可以接受Discrete或Continuous数据类型作为输入。在大型数据源上使用Microsoft神经网络之前,一定要用生产级别的负载好好测试,因为处理这类模型的开支太大了。同其他算法一样,在“算法参数”对话框中也有多个参数可以配置。同其他一些开支比较大的算法一样,只有在业务理由非常充分的情况下才有必要修改默认值。
Microsoft神经网络算法的一个变体是Microsoft逻辑回归算法。

下面我们进入主题,同样我们继续利用上次的解决方案,依次步骤如下:
数据源视图:



键:序列
输入:统率、武力、智力、政治、魅力
可预测:身分

数据内容类型:
Continuous(连续型):统率、武力、智力、政治、魅力
Discrete(离散型):身分

建模完成,产生数据挖掘结构接口包含Mining Structure(挖掘结构)、Mining Models(挖掘模型)、Mining Model Viewer(挖掘模型查看器)、Mining Accuracy Chart(挖掘精确度图表)以及Mining Model Prediction(挖掘模型预测);其中在Mining Structure(挖掘结构)中,主要是呈现数据间的关联性以及分析的变量。

挖掘模型:
在Mining Models(挖掘模型)中,主要是列出所建立的挖掘模型,也可以新增挖掘模型,并调整变量,变量使用状况包含Ignore(忽略)、Input(输入变量)、Predict(预测变量、输入变量)以及Predict Only(预测变量),如图所示。

在挖掘模型上点击鼠标右键,选择“设置算法参数...”可修改模型参数设置,如图所示

其中包含:
HIDDEN_NODE_RATIO:指定用于判断隐藏层中的节点数目。隐藏层内的节点数计算公式为:HIDDEN_NODE_RATIO *sqrt({输入节点的数目} * {输出节点的数目})。
HOLDOUT_PERCENTAGE:指定用于计算测试组预测错误的百分比,作为停止准则的一部分。
HOLDOUT_SEED:指定用于随机产生测试组的种子数据。如果未指定,算法会依据模型名称产生随机种子,以保证在重新处理模型时保持测试组相同。
MAXIMUM_INPUT_ATTRIBUTES:指定算法可处理的最大输入变量数目。将此值设置为0,会停用输入变量。
MAXIMUM_OUTPUT_ATTRIBUTES:指定算法可处理的最大输出变量数目。将此值设置为0,会停用输出变量。
MAXIMUM_STATES:指定算法所支持变量取值状态的最大数目。如果属性状态数大于该值,算法会截取最常用的状态,并将超过最大值的其余状态视为遗漏。
SAMPLE_SIZE:指定用来训练模型的案例数目。算法会取小于以下两者:SAMPLE_SIZE或total_cases *(1-HOLDOUT_PERCENTAGE/100)。

挖掘模型查看器:
“挖掘模型查看器”展示该挖掘模型的结果,通过通过柱状图表示某一变量的取值状态对预测变量影响的方向和大小。






提升图:

分类矩阵:

参考文献:
Microsoft 神经网络算法
http://msdn.microsoft.com/zh-cn/library/ms174941(v=sql.105).aspx

《BI那点儿事》Microsoft 神经网络算法的更多相关文章

  1. 《BI那点儿事—数据的艺术》目录索引

    原创·<BI那点儿事—数据的艺术>教程免费发布 各位园友,大家好,我是Bobby,在学习BI和开发的项目的过程中有一些感悟和想法,整理和编写了一些学习资料,本来只是内部学习使用,但为了方便 ...

  2. 《BI那点儿事》数据挖掘初探

    什么是数据挖掘? 数据挖掘(Data Mining),又称信息发掘(Knowledge Discovery),是用自动或半自动化的方法在数据中找到潜在的,有价值的信息和规则. 数据挖掘技术来源于数据库 ...

  3. 《BI那点儿事》Microsoft 聚类分析算法——三国人物身份划分

    什么是聚类分析? 聚类分析属于探索性的数据分析方法.通常,我们利用聚类分析将看似无序的对象进行分组.归类,以达到更好地理解研究对象的目的.聚类结果要求组内对象相似性较高,组间对象相似性较低.在三国数据 ...

  4. 《BI那点儿事》Microsoft 线性回归算法

    Microsoft 线性回归算法是 Microsoft 决策树算法的一种变体,有助于计算依赖变量和独立变量之间的线性关系,然后使用该关系进行预测.该关系采用的表示形式是最能代表数据序列的线的公式.例如 ...

  5. 《BI那点儿事》Microsoft 顺序分析和聚类分析算法

    Microsoft 顺序分析和聚类分析算法是由 Microsoft SQL Server Analysis Services 提供的一种顺序分析算法.您可以使用该算法来研究包含可通过下面的路径或“顺序 ...

  6. 《BI那点儿事》Microsoft 时序算法——验证神奇的斐波那契数列

    斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...

  7. 《BI那点儿事》数据挖掘各类算法——准确性验证

    准确性验证示例1:——基于三国志11数据库 数据准备: 挖掘模型:依次为:Naive Bayes 算法.聚类分析算法.决策树算法.神经网络算法.逻辑回归算法.关联算法提升图: 依次排名为: 1. 神经 ...

  8. 目前所有的ANN神经网络算法大全

    http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: ...

  9. 经典卷积神经网络算法(5):ResNet

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

随机推荐

  1. PHP项目感悟 -- 从CI框架来看iOS的MVC

    其实这几天一直都想找时间把这个感悟整理出来,也是这一段一直思考的问题,因为这一段参加一个PHP后台项目的开发,框架使用的是CI,随着项目的进展,对于CI接触的也越多,但是由于理解的可能并不深刻,我也只 ...

  2. 【leetcode】Pow(x,n)

    马上各种校招要开始了,怎么也得准备一下,之前一直在看看机器学习,NLP方面的东西,收获很多.最近换换脑子,回过头来做做leetcode,感觉还是蛮有意思的.今天刷了个水题,AC不高,然而难度也不高.. ...

  3. EmberJs之数组绑定@each&[]

    写在前面 好长时间没有写博客了,昨天花了些时间又整理了下之前发布过的<Ember.js之computed Property>文章,并创建了一个测试代码库,花了些时间,希望能使用测试代码的方 ...

  4. Mvc利用淘宝Kissy uploader实现图片批量上传附带瀑布流的照片墙

    前言 KISSY 是由阿里集团前端工程师们发起创建的一个开源 JS 框架.它具备模块化.高扩展性.组件齐全,接口一致.自主开发.适合多种应用场景等特性.本人在一次项目中层使用这个uploader组件. ...

  5. 修改nw.js的exe文件使其请求管理员权限

    修改nw.js的exe文件使其请求管理员权限 默认情况下,nw.js发布的nw.exe文件请求的是普通权限,当我们的应用需要访问一些特殊目录或者注册表等,就需要程序启动的时候以管理员权限运行.那么此时 ...

  6. 团队项目——站立会议 DAY8

    第八次站立会议记录: 参会人员:张靖颜,钟灵毓秀,何玥,赵莹,王梓萱 项目进展: 1.张靖颜:在反复修改和审查后,处理功能模块代码出错处,完善并运行. 2.钟灵毓秀:再次检查代码,运行报错处的代码修改 ...

  7. angularjs ng-option ie issue解决方案

    最近遇见angularjs 在IE上当使用ng-options作为select的选项数据源,并且被套在ng-switch(ng-transclude)之类的,当angular上得ng-options数 ...

  8. silverlight中Combox绑定数据以及动态绑定默认选定项的用法

    在Sliverlight中,经常要用到下拉框Combox,然而Combox的数据绑定却是一件令初学者很头疼的事情.今天就来总结一下下拉框的使用方法: 下面写一个简单的例子吧.先写一个日期的Model, ...

  9. [浅学] 1、Node.js尝试_安装&运行第一个helloworld

    官网:https://nodejs.org/ 介绍:Node.js® is a platform built on Chrome's JavaScript runtime for easily bui ...

  10. No resource found that matches the given name 'android:Widget.Material.A解决方案

    1:首先新建空白工作区 2:先import appcompat_v7 appcompat_v7在一个类似这样的地方, C:\mywork\android\android-sdk-windows\ext ...