Given an Android 3x3 key lock screen and two integers m and n, where  ≤ m ≤ n ≤ , count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.

Rules for a valid pattern:
Each pattern must connect at least m keys and at most n keys.
All the keys must be distinct.
If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
The order of keys used matters. Explanation:
| | | |
| | | |
| | | |
Invalid move: - - -
Line - passes through key which had not been selected in the pattern. Invalid move: - - -
Line - passes through key which had not been selected in the pattern. Valid move: - - - -
Line - is valid because it passes through key , which had been selected in the pattern Valid move: - - - - -
Line - is valid because it passes through key , which had been selected in the pattern. Example:
Given m = , n = , return .

我自己的backtracking做法

最开始把cur设置为一个dummy value 0

 public class Solution {
int num = 0;
public int numberOfPatterns(int m, int n) {
for (int len=m; len<=n; len++) {
HashSet<Integer> visited = new HashSet<Integer>();
count(visited, 0, 0, len);
}
return num;
} public void count(HashSet<Integer> visited, int cur, int pos, int len) {
if (pos == len) {
num++;
return;
}
for (int elem=1; elem<=9; elem++) {
if (visited.contains(elem)) continue;
if (cur == 1) {
if (elem==3 && !visited.contains(2)) continue;
if (elem==7 && !visited.contains(4)) continue;
if (elem==9 && !visited.contains(5)) continue;
}
else if (cur == 2) {
if (elem == 8 && !visited.contains(5)) continue;
}
else if (cur == 3) {
if (elem==1 && !visited.contains(2)) continue;
if (elem==7 && !visited.contains(5)) continue;
if (elem==9 && !visited.contains(6)) continue;
}
else if (cur == 4) {
if (elem == 6 && !visited.contains(5)) continue;
}
else if (cur == 6) {
if (elem == 4 && !visited.contains(5)) continue;
}
else if (cur == 7) {
if (elem==1 && !visited.contains(4)) continue;
if (elem==3 && !visited.contains(5)) continue;
if (elem==9 && !visited.contains(8)) continue;
}
else if (cur == 8) {
if (elem==2 && !visited.contains(5)) continue;
}
else if (cur == 9) {
if (elem==1 && !visited.contains(5)) continue;
if (elem==3 && !visited.contains(6)) continue;
if (elem==7 && !visited.contains(8)) continue;
}
visited.add(elem);
count(visited, elem, pos+1, len);
visited.remove(elem);
}
}
}

最好的DFS with Optimization beat 97%: https://discuss.leetcode.com/topic/46260/java-dfs-solution-with-clear-explanations-and-optimization-beats-97-61-12ms

Use an matrix to store the corssed number for each possible move and use DFS to find out all patterns.

The optimization idea is that 1,3,7,9 are symmetric, 2,4,6,8 are also symmetric. Hence we only calculate one among each group and multiply by 4.

 public class Solution {
// cur: the current position
// remain: the steps remaining
int DFS(boolean vis[], int[][] skip, int cur, int remain) {
if(remain < 0) return 0;
if(remain == 0) return 1;
vis[cur] = true;
int rst = 0;
for(int i = 1; i <= 9; ++i) {
// If vis[i] is not visited and (two numbers are adjacent or skip number is already visited)
if(!vis[i] && (skip[cur][i] == 0 || (vis[skip[cur][i]]))) {
rst += DFS(vis, skip, i, remain - 1);
}
}
vis[cur] = false;
return rst;
} public int numberOfPatterns(int m, int n) {
// Skip array represents number to skip between two pairs
int skip[][] = new int[10][10];
skip[1][3] = skip[3][1] = 2;
skip[1][7] = skip[7][1] = 4;
skip[3][9] = skip[9][3] = 6;
skip[7][9] = skip[9][7] = 8;
skip[1][9] = skip[9][1] = skip[2][8] = skip[8][2] = skip[3][7] = skip[7][3] = skip[4][6] = skip[6][4] = 5;
boolean vis[] = new boolean[10];
int rst = 0;
// DFS search each length from m to n
for(int i = m; i <= n; ++i) {
rst += DFS(vis, skip, 1, i - 1) * 4; // 1, 3, 7, 9 are symmetric
rst += DFS(vis, skip, 2, i - 1) * 4; // 2, 4, 6, 8 are symmetric
rst += DFS(vis, skip, 5, i - 1); //
}
return rst;
}
}

Leetcode: Android Unlock Patterns的更多相关文章

  1. [LeetCode] Android Unlock Patterns 安卓解锁模式

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  2. [LeetCode] 351. Android Unlock Patterns 安卓解锁模式

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  3. [Swift]LeetCode351. 安卓解锁模式 $ Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  4. Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  5. LC 351. Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  6. 351. Android Unlock Patterns

    这个题我真是做得想打人了卧槽. 题目不难,就是算组合,但是因为是3乘3的键盘,所以只需要从1和2分别开始DFS,结果乘以4,再加上5开始的DFS就行了. 问题是这个傻逼题目的设定是,从1到8不需要经过 ...

  7. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  8. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. Angular JS 学习之路由

    1.AngularJS路由允许我们通过不同的URL访问不同的内容:通过AngularJS可以实现多视图的单页WEB访问(SPA) 2.通常我们的URL形式为http://runoob.com/firs ...

  2. IntelliJ IDEA 14 注册码

    IntelliJ IDEA 14 下载地址: IntelliJ IDEA 14 下载 分享几个license: (1) key:IDEA value:61156-YRN2M-5MNCN-NZ8D2-7 ...

  3. 分布式缓存技术redis学习系列(一)——redis简介以及linux上的安装

    redis简介 redis是NoSQL(No Only SQL,非关系型数据库)的一种,NoSQL是以Key-Value的形式存储数据.当前主流的分布式缓存技术有redis,memcached,ssd ...

  4. 关于activity的生命周期的随笔

    在activity的生命周期中,我总是容易混淆,onstart和on resume ,on pause和onstop 原来这个都是一对的. onstart 对应 onstop ,意义在于使页面显示出来 ...

  5. zeppelin-0.6.0安装配置

    从http://zeppelin.apache.org/download.html 下载 zeppelin-0.6.0-bin-all.tgz 解压 修改zeppelin-site.xml,配置端口 ...

  6. Leetcode 3Sum Closest

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  7. tornado 学习笔记7 RequestHandler功能分析

           在第5部分讲到,构建一个tornado网站,必须包含一个或者多个handler,这些handler是RequestHandler的子类.每个请求都会被映射到handler中进行处理,处理 ...

  8. php 获取域名等Url

    <?php //获取域名或主机地址 echo $_SERVER['HTTP_HOST']."<br />"; //获取网页地址 echo $_SERVER['PH ...

  9. 总结-javascript-ajax

    <html><head><meta charset="utf-8"><script type="text/javascript& ...

  10. 史上自定义 JavaScript 函数Top 10

    http://www.dustindiaz.com/top-ten-javascript/     发布:wpulog | 发布时间: 2010年4月9日 10个被使用的最普遍的用户自定义函数,add ...