downsampling and upsampling【转】
orig: http://www.eetimes.com/document.asp?doc_id=1275556
downsampling
The process of reducing a sampling rate by an integer factor is referred to as downsampling of a data sequence.We also refer to downsampling as ''decimation'' (not taking one of ten). The term ''decimation'' used for the downsampling process has been accepted and used in many textbooks and fields. To downsample a data sequence x(n) by an integer factor of M, we use the following notation:
y(m) = x(mM), (12.1)
where y(m) is the downsampled sequence, obtained by taking a sample from the data sequence x(n) for every M samples (discarding M – 1 samples for every M samples). As an example, if the original sequence with a sampling period T = 0.1 second (sampling rate = 10 samples per sec) is given by
x(n):8 7 4 8 9 6 4 2 –2 –5 –7 –7 –6 –4 …
and we downsample the data sequence by a factor of 3, we obtain the downsampled sequence as
y(m):8 8 4 –5 –6 … ,
with the resultant sampling period T = 3 × 0.1 = 0.3 second (the sampling rate now is 3.33 samples per second). Although the example is straightforward, there is a requirement to avoid aliasing noise.
upsampling
Increasing a sampling rate is a process of upsampling by an integer factor of L. This process is described as follows:
y(m) = { x(m/L) m = nL,
0 otherwise, (12.9)
where n = 0, 1, 2, … , x(n) is the sequence to be upsampled by a factor of L, and y(m) is the upsampled sequence. As an example, suppose that the data sequence is given as follows:
x(n):8 8 4 –5 –6 …
After upsampling the data sequence x(n) by a factor of 3 (adding L – 1 zeros for each sample), we have the upsampled data sequence w(m) as:
w(m): 8 0 0 8 0 0 4 0 0 –5 0 0 –6 0 0 …
The next step is to smooth the upsampled data sequence via an interpolation filter. The process is illustrated in Figure 12-5a.
downsampling and upsampling【转】的更多相关文章
- 【尺度不变性】An Analysis of Scale Invariance in Object Detection – SNIP 论文解读
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做 ...
- dilated conv、deconv、fractional-strided conv
deconv的其中一个用途是做upsampling,即增大图像尺寸. dilated convolution: dilated conv,中文可以叫做空洞卷积或者扩张卷积. 首先是诞生背景,在图像分割 ...
- 图像的下采样Subsampling 与 上采样 Upsampling
I.目的 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的: 1.使得图像符合显示区域的大小: 2.生成对应图像的缩略图. 放大图像(或称为上采样(ups ...
- 【转】图像的上采样(upsampling)与下采样(subsampled)
转自:https://blog.csdn.net/stf1065716904/article/details/78450997 参考: http://blog.csdn.net/majinlei121 ...
- 图像的上采样(upsampling)与下采样(subsampled)
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图. 放大图像(或称为上采样(upsampli ...
- upsampling(上采样)& downsampled(降采样)
缩小图像 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的是两个: 使得图像符合显示区域的大小: 生成对应图像的缩略图: 下采样的原理: 对于一幅图像尺寸为 ...
- 图像上采样(图像插值)增取样(Upsampling)或内插(Interpolating)下采样(降采样),
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图.放大图像(或称为上采样(upsamplin ...
- 卷积和池化的区别、图像的上采样(upsampling)与下采样(subsampled)
1.卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去. ...
- 利用联合双边滤波或引导滤波进行升采样(Upsampling)技术提高一些耗时算法的速度。
这十年来,在图像处理领域提出了很多新的图像分析和处理方法,包括是自动的以及一些需要有人工参与的,典型的比如stereo depth computations.image colorization.to ...
随机推荐
- 忠告初学者学习Linux系统的8点建议
导读 新手或者说即将要入坑的小伙伴们,常常在QQ群或者在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的.例如:如何给添加的用户归属用户组,复制整个文件到另一个目录下面,磁盘合理划分,甚至 ...
- 使用CSDN Code将网站部署到Windows Azure Website上
在云计算时代,开发和部署应该是完全统一和集成的.在海外,开发者可以用github来管理他们的代码,并且直接部署到Windows Azure上.随着Windows Azure在国内的发布,我们发现,其实 ...
- Homebrew安装及使用
简介 Homebrew官网:http://brew.sh/index_zh-cn.html Homebrew是Mac OSX上的软件包管理工具,能在Mac中方便的安装软件或者卸载软件,相当于linux ...
- Java泛型学习笔记 - (一)泛型的介绍
一.什么是泛型:泛型的作用是用来规定一个类, 接口或方法所能接受的数据的类型. 就像在声明方法时指定参数一样, 我们在声明一个类, 接口或方法时, 也可以指定其"类型参数", 也就 ...
- Ajax与Comet
1.Ajax核心? XHR >>1.新建XMLHttpRequest >>2.open(),接受3个参数. >>3.send(),接受1个参数. >>4 ...
- 关闭键盘导致tableView:didSelectRowAtIndexPath:失效解决办法
今天公司的小兄弟问了tableView:didSelectRowAtIndexPath:不能执行的问题. 从经验看觉得可能是控制器没有成为tableView的代理所致.但代码中已经添加了代码 _tab ...
- HTML的 <u> 标签
实例 使用 <u> 标签为文本添加下划线: <p>如果文本不是超链接,就不要<u>对其使用下划线</u>.</p> 亲自试一试 浏览器支持 ...
- Spring学习笔记(一)
1.1.1Spring是什么? Spring是一个开源的轻量级Java SE(Java 标准版本)/Java EE(Java 企业版本)开发应用框架,其目的是用于简化企业级应用程序开发. 1.1.2S ...
- Outlook不能预览和打开Excel文件:
无法打开Outlook邮箱中的Excel附件,确实让人恼火 先不要着急: 1.在开始->运行,输入"regedit" 2.找到路径:HKEY_CURRENT_USER\Sof ...
- 关于linq to sql类线程同步问题
例如,下面一段代码,当两个线程同时访问时会出现各种由于线程不同步而导致的问题,比如什么DataReader已打开未关闭啊,已经添加了重复的键啊等等. /// <summary> /// 当 ...