downsampling and upsampling【转】
orig: http://www.eetimes.com/document.asp?doc_id=1275556
downsampling
The process of reducing a sampling rate by an integer factor is referred to as downsampling of a data sequence.We also refer to downsampling as ''decimation'' (not taking one of ten). The term ''decimation'' used for the downsampling process has been accepted and used in many textbooks and fields. To downsample a data sequence x(n) by an integer factor of M, we use the following notation:
y(m) = x(mM), (12.1)
where y(m) is the downsampled sequence, obtained by taking a sample from the data sequence x(n) for every M samples (discarding M – 1 samples for every M samples). As an example, if the original sequence with a sampling period T = 0.1 second (sampling rate = 10 samples per sec) is given by
x(n):8 7 4 8 9 6 4 2 –2 –5 –7 –7 –6 –4 …
and we downsample the data sequence by a factor of 3, we obtain the downsampled sequence as
y(m):8 8 4 –5 –6 … ,
with the resultant sampling period T = 3 × 0.1 = 0.3 second (the sampling rate now is 3.33 samples per second). Although the example is straightforward, there is a requirement to avoid aliasing noise.
upsampling
Increasing a sampling rate is a process of upsampling by an integer factor of L. This process is described as follows:
y(m) = { x(m/L) m = nL,
0 otherwise, (12.9)
where n = 0, 1, 2, … , x(n) is the sequence to be upsampled by a factor of L, and y(m) is the upsampled sequence. As an example, suppose that the data sequence is given as follows:
x(n):8 8 4 –5 –6 …
After upsampling the data sequence x(n) by a factor of 3 (adding L – 1 zeros for each sample), we have the upsampled data sequence w(m) as:
w(m): 8 0 0 8 0 0 4 0 0 –5 0 0 –6 0 0 …
The next step is to smooth the upsampled data sequence via an interpolation filter. The process is illustrated in Figure 12-5a.
downsampling and upsampling【转】的更多相关文章
- 【尺度不变性】An Analysis of Scale Invariance in Object Detection – SNIP 论文解读
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做 ...
- dilated conv、deconv、fractional-strided conv
deconv的其中一个用途是做upsampling,即增大图像尺寸. dilated convolution: dilated conv,中文可以叫做空洞卷积或者扩张卷积. 首先是诞生背景,在图像分割 ...
- 图像的下采样Subsampling 与 上采样 Upsampling
I.目的 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的: 1.使得图像符合显示区域的大小: 2.生成对应图像的缩略图. 放大图像(或称为上采样(ups ...
- 【转】图像的上采样(upsampling)与下采样(subsampled)
转自:https://blog.csdn.net/stf1065716904/article/details/78450997 参考: http://blog.csdn.net/majinlei121 ...
- 图像的上采样(upsampling)与下采样(subsampled)
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图. 放大图像(或称为上采样(upsampli ...
- upsampling(上采样)& downsampled(降采样)
缩小图像 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的是两个: 使得图像符合显示区域的大小: 生成对应图像的缩略图: 下采样的原理: 对于一幅图像尺寸为 ...
- 图像上采样(图像插值)增取样(Upsampling)或内插(Interpolating)下采样(降采样),
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图.放大图像(或称为上采样(upsamplin ...
- 卷积和池化的区别、图像的上采样(upsampling)与下采样(subsampled)
1.卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去. ...
- 利用联合双边滤波或引导滤波进行升采样(Upsampling)技术提高一些耗时算法的速度。
这十年来,在图像处理领域提出了很多新的图像分析和处理方法,包括是自动的以及一些需要有人工参与的,典型的比如stereo depth computations.image colorization.to ...
随机推荐
- 远程线程DLL注入64位进程
int main() { BOOL bFlag = FALSE; char *szDllName = "MSGDLL.dll"; //bFlag = EnablePrivilege ...
- Android apk集成
刚开始学习Android,对很多东西都不懂,所以以下是我做的第一件事,记录一下,也就是apk的集成: 我们集成的apk是已经签过名的第三方apk,并且需要集成到system/priv-app目录下,过 ...
- 1476. Lunar Code
http://acm.timus.ru/problem.aspx?space=1&num=1476 由于前一列对后一列有影响,所以需要保持前一列的状态, 但无需用状态压缩来保存(也保存不了) ...
- Android studio打开之后 cannot load project: java.lang.NUllpointerException
参考来源:http://bbs.csdn.net/topics/391014393 关闭网络,重新打开Android studio就好了.(但是原因不清楚是为什么?) Internal error. ...
- 编程key note
一些日常发现的code better的要点.不断更新. * #include <assert.h> 使用断言* 每个模块(文件)应该有一个唯一的一个前缀,模块导出的所有全局名字都应以此前缀 ...
- 安装 mbed os 开发环境yotta
feature: 采用Python编写, Pip 包管理 CMake, the build system that yotta usesa compiler, to actually compile ...
- stella mccartney falabella foldover tote a few eye observed
Lately, the particular Heyuan City Courtroom retrial, in order to commit the criminal offense of cou ...
- 课程笔记:——javascript中的预解释2
in:检测某一个属性是否属于这个对象(既可以检测私有的属性,也可以检测公有的属性) --> attr in obj 1.不管条件是否成立,在预解释的时候,判断体中的带var和function的都 ...
- 阿伦学习html5 之 Local Storage (本地储存)
一.浏览器存储的发展历程 本地存储解决方案很多,比如Flash SharedObject.Google Gears.Cookie.DOM Storage.User Data.window.name.S ...
- multipath tcp experiment
git clone https://github.com/Neohapsis/mptcp-abuse.git sudo apt-get install python-pip sudo pip inst ...