Description

IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记。JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件。
日记中记录了连续N天发生的时间,大约每天发生一件。
事件有种类之分。第i天(1<=i<=N)发生的事件的种类用一个整数Xi表示,Xi越大,事件的规模就越大。
JOI教授决定用如下的方法分析这些日记:
1. 选择日记中连续的一些天作为分析的时间段
2. 事件种类t的重要度为t*(这段时间内重要度为t的事件数)
3. 计算出所有事件种类的重要度,输出其中的最大值
现在你被要求制作一个帮助教授分析的程序,每次给出分析的区间,你需要输出重要度的最大值。

Input

第一行两个空格分隔的整数N和Q,表示日记一共记录了N天,询问有Q次。
接下来一行N个空格分隔的整数X1...XN,Xi表示第i天发生的事件的种类
接下来Q行,第i行(1<=i<=Q)有两个空格分隔整数Ai和Bi,表示第i次询问的区间为[Ai,Bi]。

Output

输出Q行,第i行(1<=i<=Q)一个整数,表示第i次询问的最大重要度

Sample Input

5 5
9 8 7 8 9
1 2
3 4
4 4
1 4
2 4

Sample Output

9
8
8
16
16

HINT

1<=N<=10^5
1<=Q<=10^5
1<=Xi<=10^9 (1<=i<=N)

正解:分块

解题报告:

  这道题卡了我好久。。。数据恶心,差评。。。

  w[i][j]表示第i块到第j块的答案(即题目要求的最大值),cnt[i][j]表示前i块种类为j的数的个数前缀和。

  显然这可以O(N^(3/2))预处理。查询的时候整块的直接以整块答案为初值,然后考虑“边角余料”,加进num中统计,更新答案,具体看代码吧。

  我开始WA了,因为有一个数组没开long long。。。之后一直TLE,我不知道一个评测80s的题目TLE几次是什么感觉。。。经过二分查错,我发现并没有问题。

  最后迷之AC了,因为把一个不必要的long long开成了int就AC了。常数害死人。。。

  

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#ifdef WIN32
#define OT "%I64d"
#else
#define OT "%lld"
#endif
using namespace std;
typedef long long LL;
const int MAXN = ;
const int kk = ;
int n,m;
int belong[MAXN],L[MAXN],R[MAXN];
int num[MAXN];
int match[MAXN],Stack[MAXN],top;
LL w[kk][kk];
int cnt[kk][MAXN];//w[i][j]表示第i块到第j块的答案, cnt[i][j]表示前i块数字为j的个数
LL ans; struct node{
int val,id;
}a[MAXN]; inline int getint()
{
int w=,q=;
char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} inline bool cmp(node q,node qq){ return q.val<qq.val; }
inline LL max(LL x,LL y){ if(x<y) return y; return x; } inline void work(){
n=getint(); m=getint(); int block=sqrt(n),kuai;
//int block=325; int kuai;
kuai=(n-)/block+;
for(int i=;i<=n;i++) a[i].val=getint(),a[i].id=i;
for(int i=;i<=n;i++) {
belong[i]=(i-)/block+;
if(!L[belong[i]]) L[belong[i]]=i;
R[belong[i]]=i;
}
sort(a+,a+n+,cmp); match[a[].id]=;
//用每个数字出现的第一个位置代替这个数字作为它的编号
for(int i=;i<=n;i++) {//构出从小到大的原来顺序的离散化结果
if(a[i].val==a[i-].val) match[a[i].id]=match[a[i-].id];
else match[a[i].id]=i;
}
for(int i=;i<=n;i++) cnt[belong[i]][match[i]]++;
for(int i=;i<=kuai;i++) for(int j=;j<=n;j++) cnt[i][j]+=cnt[i-][j];//构前缀和
for(int i=;i<=kuai;i++) {
memset(num,,sizeof(num)); ans=;
for(int now=L[i];now<=n;now++) {//按原先的顺序统计种类的个数
num[match[now]]++; ans=max(ans,(LL)num[match[now]]*a[match[now]].val);
if(now==R[belong[now]]) w[i][belong[now]]=ans;//已经到最后一个
}
}
memset(num,,sizeof(num));
int l,r;
for(int o=;o<=m;o++) {
l=getint(); r=getint(); ans=;
if(belong[l]==belong[r]) {
top=;
for(int i=l;i<=r;i++) { if(!num[match[i]]) Stack[++top]=match[i]; num[match[i]]++; ans=max(ans,(LL)num[match[i]]*a[match[i]].val); }
//我们记录一个处理过的种类,Stack保存需要清零的对象
while(top>) num[Stack[top--]]=;
}
else{
top=; if(belong[l]<belong[r]) ans=w[belong[l]+][belong[r]-];
//找到不完整的块中的出现的种类,然后统计完整的块中的出现的次数
for(int i=l;i<=R[belong[l]];i++) if(!num[match[i]]) num[match[i]]=cnt[belong[r]-][match[i]]-cnt[belong[l]][match[i]],Stack[++top]=match[i];
for(int i=L[belong[r]];i<=r;i++) if(!num[match[i]]) num[match[i]]=cnt[belong[r]-][match[i]]-cnt[belong[l]][match[i]],Stack[++top]=match[i];
for(int i=l;i<=R[belong[l]];i++) num[match[i]]++;
for(int i=L[belong[r]];i<=r;i++) num[match[i]]++;
while(top>) { ans=max(ans,(LL)num[Stack[top]]*a[Stack[top]].val); num[Stack[top--]]=;}//清零
}
printf("%lld\n",ans);
}
} int main()
{
work();
return ;
}

BZOJ4241 历史研究的更多相关文章

  1. [JOISC2014]歴史の研究/[BZOJ4241]历史研究

    [JOISC2014]歴史の研究/[BZOJ4241]历史研究 题目大意: 一个长度为\(n(n\le10^5)\)的数列\(A(A_i\le10^9)\),定义一个元素对一个区间\([l,r]\)的 ...

  2. 【题解】BZOJ4241: 历史研究(魔改莫队)

    [题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...

  3. BZOJ4241历史研究——回滚莫队

    题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...

  4. BZOJ4241 历史研究 莫队 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JO ...

  5. BZOJ4241:历史研究(回滚莫队)

    Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...

  6. [bzoj4241][历史研究] (分块)

    Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...

  7. BZOJ4241 历史研究(莫队)

    如果分块的话与区间众数没有本质区别.这里考虑莫队. 显然莫队时的删除可以用堆维护,但多了一个log不太跑得过. 有一种叫回滚莫队的trick,可以将问题变为只有加入操作.按莫队时分的块依次处理,一块中 ...

  8. 2018.08.14 bzoj4241: 历史研究(回滚莫队)

    传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...

  9. bzoj4241: 历史研究(回滚莫队)

    传送门 这是一个叫做回滚莫队的神奇玩意儿 是询问,而且不强制在线,就决定是你了莫队 如果是每次插入一个数是不是很简单? 然而悲剧的是我们莫队的时候不仅要插入数字还要删除数字 那么把它变成只插入不就行了 ...

随机推荐

  1. 在A*寻路中使用二叉堆

    接上篇:A*寻路初探 GameDev.net 在A*寻路中使用二叉堆 作者:Patrick Lester(2003年4月11日更新) 译者:Panic 2005年3月28日 译者序 这一篇文章,是&q ...

  2. [C#] 委托之Action和Func区别

    一.说明 一般我们定义委托都是有如下两步: public delegate void MyDelegate(string name);//定义委托 public MyDelegate myDelega ...

  3. Unity3D多人协作开发环境搭建

    多人协作 说到多人协作开发,大家都会想到要使用版本控制工具来管理项目,当然最常用的要数SVN和Git了,但是SVN管理Unity3D项目的确有一些不尽人意的地方. 比如:两个人修改了同一个场景,SVN ...

  4. C和指针笔记 3.7 存储类型

    变量的破碎类型是指存储变量值的内存类型.变量的存储类型决定变量何时创建.何时销毁以及它的值将保持多久. 有三个地方可以用于存在变量:普通内存.运行时堆栈.硬件寄存器. 变量的缺省存储类型取决于它的声明 ...

  5. 24Spring_事务管理机制

    第一部分:Spring事务管理高层抽象接口 我们介绍三个接口:1.PlatformTransactionManager 2.TransactionDefinition  3.TransactionSt ...

  6. JS框架之收集专帖

    1.KNOCKOUT.JS 官网:http://knockoutjs.com/ 学习:http://www.cnblogs.com/TomXu/archive/2011/11/21/2257154.h ...

  7. WPF SDK研究 之 AppModel

    Jianqiang's Mobile Dev Blog iOS.Android.WP CnBlogs Home New Post Contact Admin Rss Posts - 528 Artic ...

  8. C语言 二级指针内存模型③

    //二级指针内存模型③ #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #incl ...

  9. php基础11:运算符

    <?php $a = 5; $b = ++$a; echo '$a'.$a; echo "<br>"; echo '$b'.$b; echo "< ...

  10. 九度oj-1003-Java

    题目描述: 给定两个整数A和B,其表示形式是:从个位开始,每三位数用逗号","隔开. 现在请计算A+B的结果,并以正常形式输出. 输入: 输入包含多组数据数据,每组数据占一行,由两 ...