连通性1 求无向图的low值
这是 DFS 系列的第一篇 。
首先给出一个重要的定理。该定理来自《算法导论》。
An undirected graph may entail some ambiguity in how we classify edges, since $(u,v)$ and $(v,u)$ are really the same edge. In such a case, we classify the edge according to whichever of $(u,v)$ or $(v,u)$ the search encounters first.
Introduction to Algorithm 3rd edition p.610
Theorem 22.10
In a depth-first search of an undirected graph $G$, every edge of $G$ is either a tree edge or a back edge.
Proof Let $(u, v)$ be an arbitrary edge of $G$, and suppose without loss of generality that $u.d < v.d$. Then the search must discover and finish $v$ before it finishes $u$ (while $u$ is gray), since $v$ is on $u$’s adjacency list. If the first time that the search explores edge $(u, v)$, it is in the direction from $u$ to $v$, then $v$ is undiscovered (white) until that time, for otherwise the search would have explored this edge already in the direction from $v$ to $u$. Thus, $(u, v)$ becomes a tree edge. If the search explores $(u, v)$ first in the direction from $v$ to $u$, then $(u, v)$ is a back edge, since $u$ is still gray at the time the edge is first explored.
low 值大概是 Robert Tarjan 在论文 Depth-first search and linear graph algorithms SIAM J. Comput. Vol. 1, No. 2, June 1972 给出的概念。
(p.150)"..., LOWPT(v) is the smallest vertex reachable from v by traversing zero or more tree arcs followed by at most one frond."
代码如下
#define set0(a) memset(a, 0, sizeof(a))
typedef vector<int> vi;
vi G[MAX_N];
int ts; //time stamp
int dfn[MAX_N], low[MAX_N];
void dfs(int u, int f){
dfn[u]=low[u]=++ts;
for(int i=; i<G[u].size(); i++){
int &v=G[u][i];
if(!dfn[v]){ //tree edge
dfs(v, u);
low[u]=min(low[u], low[v]);
}
else if(dfn[v]<dfn[u]&&v!=f){ //back edge
low[u]=min(low[u], dfn[v]);
}
}
}
void solve(int N){
set0(dfn);
ts=;
for(int i=; i<=N; i++)
if(!dfn[i]) dfs(i, i);
}
连通性1 求无向图的low值的更多相关文章
- Hdu 4738【tanjan求无向图的桥】割边判定定理 dfn[x] < low[y]
题目: 曹操在长江上建立了一些点,点之间有一些边连着.如果这些点构成的无向图变成了连通图,那么曹操就无敌了.刘备为了防止曹操变得无敌,就打算去摧毁连接曹操的点的桥.但是诸葛亮把所有炸弹都带走了,只留下 ...
- 【求无向图的桥,有重边】ZOJ - 2588 Burning Bridges
模板题——求割点与桥 题意,要使一个无向图不连通,输出必定要删掉的边的数量及其编号.求桥的裸题,可拿来练手. 套模板的时候注意本题两节点之间可能有多条边,而模板是不判重边的,所以直接套模板的话,会将重 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- FZU 2090 旅行社的烦恼 floyd 求无向图最小环
题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程 ...
- Tarjan求无向图割点、桥详解
tarjan算法--求无向图的割点和桥 一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...
- tarkjan求无向图割点模板
#include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ; ; struct node { ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- 求 无向图的割点和桥,Tarjan模板
/* 求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块. 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重 */ const int MAXN = 10010; cons ...
- tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- javascript之享元模式
实现享元模式的一般步骤: 1.将所有外在数据从目标类中剥离.具体做法是尽可能多的删除该类的属性,所删除的应该是那种因实例而异的属性.构造函数的参数也要这样处理,这些参数应该被添加到该类的各个方法. 这 ...
- POJ 1182 食物链
G - 食物链 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- 25Spring_事务管理的两种机制
一共有两种事务管理机制:编程式事务管理和声明式事务管理. 1.编程式事务管理企业已经不用了. 2.我们主要讲的是声明式事务管理.声明式事务管理 ,无需要修改原来代码,只需要配置,为目标代码添加事务管理 ...
- Tasks.Parallel
.Net多线程编程-System.Threading.Tasks.Parallel System.Threading.Tasks.Parallel类提供了Parallel.Invoke,Paral ...
- [CareerCup] 9.4 Subsets 子集合
9.4 Write a method to return all subsets of a set. LeetCode上的原题,请参见我之前的博客Subsets 子集合和Subsets II 子集合之 ...
- Linux 基础入门(新版)”实验报告一~十二
实验报告 日期: 2015年9月15日 一.实验的目的与要求 熟练地使用 Linux,本实验介绍 Linux 基本操作,shell 环境下的常用命令. 二.主要内容 1.Linux 基础入门& ...
- Arduino智能小车制作报告
Arduino智能小车制作报告 制作成员:20135224陈实 20135208贺邦 20135207王国伊 前提: Arduino,是一个开源的单板机控制器,采用了基于开放源代码的软硬件平台,构 ...
- UIAccessibilityElement
UIaccessibilityElement类封装的项目信息对一些特殊的人可见,默认情况下是不可访问的.例如,一个图标或文字图像不会自动访问,因为它没有继承的UIView(或UIControl).一个 ...
- android最佳实践之设备兼容性
由于不同手机的尺寸大小,屏幕分辨率可能存在差异.在开发应用的时候,你或许遇到过这些的问题: 1, 为什么图片在另外的手机上显示的时候变小了,又或是缩小了? 2, 为什么在layout中定义好的格局在另 ...
- php上传图片---初级版
没有样式,没有淘宝的那种放大截取大小的效果,只是实现了图片上传的功能. 图片超过100k,会出现内部错误服务器错误,需要手动更改配置文件里的MaxRequestLen属性. 下面粘上代码: <? ...