跟我一起ggplot2(1)
ggplot2
R的作图工具包,可以使用非常简单的语句实现非常复杂漂亮的效果。
qplot
加载qplot
library(ggplot2) # 测试数据集,ggplot2内置的钻石数据
qplot(carat, price, data = diamonds)
dsmall <- diamonds[sample(nrow(diamonds), 100), ] #对diamonds数据集进行抽样
#1. 按color,size,shape的基本分类可视化
#1.1 简单的散点图(利用color分类,不同颜色的钻石由不同颜色的点代表)

#1.2. 简单的散点图(利用shape分类,不同的切割方式由不同形状的点代表)

#2. 绘制不同类型的图表:geom参数
qplot(x,y,data=data,geom="")中的geom=""用来控制输出的图形类型
I. 两变量图
(1) geom="points",默认参数,绘制散点图(x,y)
(2) geom="smooth" 绘制平滑曲线(基于loess, gam, lm ,rlm,glm)
(3) geom="boxplot" 绘制箱线图 ,当x为属性变量(factor),y为数值变量时
II.单变量图
(4) geom="histogram",直方图
(5) geom="density",核密度估计图
(6) geom="bar",条形图barchart
III.时间序列
(7) geom="line",折线图,可用于时间序列(当x=date)
(8) geom="path",路径图(参见后文)
# 2.1 同时绘制散点图+平滑直线
qplot(carat, price, data = dsmall, geom=c("point","smooth"))

#参数调整:method=""等
#(a). method = "loess", 默认平滑算法, 通过span=调整窗宽, span=0(波动) 到 span=1(光滑)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "loess",span=0.2)

# (b). method = "gam": GAM 在大数据时比loess高效,需要载入 mgcv 包
library(mgcv)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method="gam", formula = y ~ s(x))

# (c). method="lm", 线性平滑
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "lm")

# method="lm",formula = y ~ ns(x, 3),三次自然样条,需要载入splines包
library(splines)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "lm", formula = y ~ ns(x, 3))

# method = "rlm", robust linear model, 受异常值影响小,需要载入MASS包
library(MASS)
qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
method = "rlm")

# 2.2:x为属性变量,y为连续变量,绘制boxplot
qplot(color, price/carat, data=diamonds,geom="boxplot")

# 2.3:单变量,直方图
qplot(carat, data = diamonds, geom = "histogram")

#2.4: 单变量,核密度估计图
qplot(carat, data = diamonds, geom = "density")

# 按不同颜色绘制的density图
qplot(carat, data = diamonds, geom = "density",colour=color)

# 2.5 条形图(柱状图)
#计数,求count(color)
qplot(color, data = diamonds, geom = "bar")

#加权,对每个求sum(carat),类似于excel里的数据透视图,按不同的color计算carat的总和
qplot(color, data = diamonds, geom = "bar", weight = carat)

#2.6. Time-series
qplot(date, unemploy / pop, data = economics, geom = "line")

#2.7. Path plot
#如果要查看失业率(unemploy / pop)与平均失业时间(uempmed)之间的关系,一个方法是利用散点图,但是这样做就会导致无法观察到随时间变化的趋势了,path plot利用颜色深浅来代表年份,随着颜色从浅蓝变成深蓝,可以观察到失业率与失业时间的关系的变化趋势。
#具体实现:先自定义函数year(),将字符串格式的时间转化为年
year <- function(x) as.POSIXlt(x)$year + 1900 #画出path plot,颜色按年份由浅到深
qplot(unemploy / pop, uempmed, data = economics,
geom = "path", colour = year(date))

我们已经讨论了如何利用外观参数在同一图中比较不同分类的差异。而分面可以将不同的亚类放在不同的图中进行比较:
qplot(carat, data = diamonds, facets = color ~ .,geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

qplot(carat, data = diamonds, facets = color ~ .,geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

下面的图形在一开始的基础上添加了新的元素:分面,多个图层以及统计数据。分面和图层扩展了上面提到的数据结构:每一个分面的每一个图层都有属于自己的数据集。你可以将它想象成是一个三维的数组:分面构成了二维平面,然后图层给予其在新的维度上的扩展。在这个例子中,不同图层上的数据是一样的,但是从理论上来讲,不同的图层中可以有不同的数据。
qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

ggplot
基本绘图类型:
这些几何元素是ggplot的基础。他们彼此结合可以构成复杂的图像。他们中的绝大多数对应特定的绘图类型。
geom_area()
geom_bar()
geom_line()
geom_point()
geom_polygon()
geom_text()
geom_tile()
> library("ggplot2")
> head(mpg)
manufacturer model displ year cyl trans drv cty
1 audi a4 1.8 1999 4 auto(l5) f 18
2 audi a4 1.8 1999 4 manual(m5) f 21
3 audi a4 2.0 2008 4 manual(m6) f 20
4 audi a4 2.0 2008 4 auto(av) f 21
5 audi a4 2.8 1999 6 auto(l5) f 16
6 audi a4 2.8 1999 6 manual(m5) f 18
hwy fl class
1 29 p compact
2 29 p compact
3 31 p compact
4 30 p compact
5 26 p compact
6 26 p compact
> p <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(year)))
> summary(p)
data: manufacturer, model, displ, year, cyl,
trans, drv, cty, hwy, fl, class [234x11]
mapping: x = cty, y = hwy, colour = factor(year)
faceting: facet_null()
然后就是几何对象和统计,简单的理解就是通过统计变换把前面的元素表现出来,因为统计变换的函数stat开头的默认有包含自己的几何图形,而几何图形函数geom又带有自己的统计变换,通常都能达到目的。
p + geom_point() #散点图

ggplot(mpg, aes(x = displ)) + geom_histogram(aes(y = (..count..)), fill = "steelblue", colour = "#808080", bin = 0.1) #直方图

ggplot(mpg, aes(y = displ, x = factor(cyl), fill = factor(cyl))) + geom_boxplot() #盒图

ggplot(diamonds, aes(carat, price)) + stat_bin2d() #二维密度图

p + geom_point() + stat_smooth(method = "lm", se = F)

ggplot(mpg, aes(x = cty, y = hwy)) + geom_point(aes(colour = factor(year))) + stat_smooth(method = "lm", se = F) #请注意两种方式的区别

ggplot(mpg, aes(y = hwy, x = class, colour = class)) + geom_boxplot() + geom_jitter(alpha = 0.3) +
theme(panel.grid = element_blank(), panel.background = element_rect(fill = NA, colour = "black"))

ggplot(mpg, aes(x = displ)) + stat_bin(aes(y = ..density.., fill = factor(year)),
colour = "#909090") + stat_density(aes(ymax = "density", colour = factor(year)),
geom = "line", size = 1.2) + facet_wrap(~year, ncol = 1)

ggplot2中的基本概念
将数据中变量映射到图形属性。映射控制了二者之间的关系。

标度:标度负责控制映射后图形属性的显示方式。具体形式上来看是图例和坐标刻度。scale和mapping是紧密相关的概念。

几何对象(Geometric):几何对象代表我们图中看到的图形元素,如点、线、多边形等。

统计变换(Statistics):对原始数据进行某种计算,例如二元散点上加上一条回归线。

坐标系统(Coordinate):坐标系统控制坐标轴并影响所有图形元素,坐标轴可以进行变换以满足不同的需要。

图层(Layer):数据、映射、几何对象、统计变换等构成一个图层。图层可以允许用户一步步的构建图形,方便单独对图层进行修改。

分面(Facet):条件绘图,将数据按某种方式分组,然后分别绘图。分面就是控制分组绘图的方法和排列形式。

总结
关于ggplot2的绘图功能还有待进一步挖掘。
跟我一起ggplot2(1)的更多相关文章
- R语言:ggplot2精细化绘图——以实用商业化图表绘图为例
本文版权归http://www.cnblogs.com/weibaar 本文旨在介绍R语言中ggplot2包的一些精细化操作,主要适用于对R画图有一定了解,需要更精细化作图的人,尤其是那些刚从exce ...
- ggplot2 多图排版
和R自带的绘图系统不同,ggplot2不能直接通过par(mfrow) 或者 layout()来排版多张图片.终于发现,其实可以通过一个『gridExtra』包来搞定: require(gridExt ...
- ggplot2 上篇
title: "ggplot2 上篇" author: "li_volleyball" date: "2016年4月16日" output: ...
- ggplot2包--R可视化
1.ggplot2发展历程 ggplot2是Hadley在爱荷华州立大学博士期间的作品,也是他博士论文的主题之一,实际上ggplot2还有个前身ggplot,但后来废弃了,某种程度上这也是Hadley ...
- ggplot2.multiplot:将多个图形使用GGPLOT2在同一页上
一页多图 介绍 ggplot2.multiplot是一个易于使用的功能,将多个图形在同一页面上使用R统计软件和GGPLOT2绘图方法.这个功能是从easyGgplot2包. 安装并加载easyGgpl ...
- ggplot2 legend图例的修改
ggplot2中的legend包括四个部分: legend.tittle, legend.text, legend.key, legend.backgroud.针对每一部分有四种处理方式: eleme ...
- Plotting means and error bars (ggplot2)
library(ggplot2) ############################################# # summarySE ######################### ...
- ggplot2 学习笔记 (持续更新.....)
1. 目前有四种主题 theme_gray(), theme_bw() , theme_minimal(),theme_classic() 2. X轴设置刻度 scale_x_continuous(l ...
- ggplot2 demo
title <- rep("A Really Rather Long Text Label", 25)value <- runif(25, 1,10)spacing & ...
随机推荐
- 前端框架 EasyUI (1)熟悉一下EasyUI
jQuery EasyUI 官方网站 http://www.jeasyui.com/ .去年新开了个中文网 http://www.jeasyui.net/,不知道是不是官方的,不过看着挺像样.但是,广 ...
- .NET Core系列 : 1、.NET Core 环境搭建和命令行CLI入门
2016年6月27日.NET Core & ASP.NET Core 1.0在Redhat峰会上正式发布,社区里涌现了很多文章,我也计划写个系列文章,原因是.NET Core的入门门槛相当高, ...
- javascript中的继承与深度拷贝
前言 本篇适合前端新人,下面开始...... 对于前端新手来说(比如博主),每当对js的对象做操作时,都是一种痛苦,原因就是在于对象的赋值是引用的传递,并非值的传递,虽然看上去后者赋值给了前者,他们就 ...
- 【算法】(查找你附近的人) GeoHash核心原理解析及代码实现
本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点( ...
- mysql百万级分页优化
普通分页 数据分页在网页中十分多见,分页一般都是limit start,offset,然后根据页码page计算start , 这种分页在几十万的时候分页效率就会比较低了,MySQL需要从头开始一直往后 ...
- join Linq
List<Publisher> Publishers = new List<Publisher>(); Publisher publish1 = new Publisher() ...
- 监控 SQL Server (2005/2008) 的运行状况
Microsoft SQL Server 2005 提供了一些工具来监控数据库.方法之一是动态管理视图.动态管理视图 (DMV) 和动态管理函数 (DMF) 返回的服务器状态信息可用于监控服务器实例的 ...
- 我的MYSQL学习心得(五) 运算符
我的MYSQL学习心得(五) 运算符 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据 ...
- C#移动跨平台开发(1)环境准备
C#依托于mono平台可以实现Unix平台服务器端开发已经不是什么新鲜事了,而Xarmain公司(初始成员大多来自原Mono.MonoTouch.Mono For Android成员)继续将C#的先进 ...
- Linux学习日记-(一)
一.为什么学习Linux 大学时开始接触Linux,最开始学习的是RedHat(小红帽),感觉Linux好像很久不见的老朋友,用起来很舒服(虽然我们用的是DotNet).很喜欢它的命令模式,让我能接触 ...