poj 2186 有向图强连通分量
奶牛互相之间有爱慕关系,找到被其它奶牛都喜欢的奶牛的数目
用tarjan缩点,然后判断有向图中出度为0的联通分量的个数,如果为1就输出联通分量中的点的数目,否则输出0.
算法源自kb模板
#include<cstdio>
#include<iostream>
#include<cstring>
const int MAXN=;//点数
const int MAXM=;//边数
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
//num数组不一定需要,结合实际情况
int out[MAXN],tmp,Num,ans;
void addedge(int u,int v)
{
edge[tot].to=v;edge[tot].next=head[u];head[u]=tot++;
}
void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for(int i=head[u];i != -;i=edge[i].next)
{
v=edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u] > Low[v])Low[u]=Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u]=DFN[v];
}
if(Low[u]==DFN[u])
{
scc++;
do
{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}
while(v != u);
}
}
void solve(int N)
{
memset(out,,sizeof(out));
memset(Belong,,sizeof(Belong));
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,,sizeof(num));
Index=scc=top=;
for(int i=;i <= N;i++)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot=;
memset(head,-,sizeof(head));
}
int main()
{
int n,m;
int i,j,v;
//freopen("1.in","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
int q,p;
for(i=;i<=m;i++)
{
scanf("%d%d",&p,&q);
addedge(p,q);
}
solve(n);
for(i=;i<=n;i++)
{
for(v=head[i];v!=-;v=edge[v].next)
{
if(Belong[i]!=Belong[edge[v].to])
{
out[Belong[i]]++;
}
}
}
ans=,Num=;
for(i=;i<=scc;i++)
{
if(!out[i])
{
Num++;
tmp = i;
}
}
if(Num==)
{
for(i=;i<=n;i++)
{
if(Belong[i]==tmp)
ans++;
}
printf("%d\n",ans);
}
else
{
printf("0\n");
}
}
return ;
}
poj 2186 有向图强连通分量的更多相关文章
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 【转】有向图强连通分量的Tarjan算法
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...
- 图的连通性:有向图强连通分量-Tarjan算法
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 算法笔记_144:有向图强连通分量的Tarjan算法(Java)
目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...
- POJ3180(有向图强连通分量结点数>=2的个数)
The Cow Prom Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1451 Accepted: 922 Descr ...
- 有向图强连通分量的Tarjan算法及模板
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...
- hdu1269(有向图强连通分量)
hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...
随机推荐
- squid 学习笔记
Squid学习笔记 1.安装前的配置 编译安装之前需要校正的参数主要包括File Descriptor和Mbuf Clusters. 1.File Descriptor 查看文件描述符的限制数目: u ...
- .NET设计模式(2):单件模式(Singleton Pattern)(转载)
概述 Singleton模 式要求一个类有且仅有一个实例,并且提供了一个全局的访问点.这就提出了一个问题:如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例?客户程 序在调用某一个类时,它是不 ...
- 给setTimeout和setIntreval函数添加回调参数
setTimeout和setInterval是两个很常见的计时函数.在以前,他们只接收两个参数,我们无法直接向他们的回调函数中添加参数,如果需要实现添加多个参数,可以在外层多嵌一层来实现类似的功能.现 ...
- JSON做下拉表格
主页面,5-18j.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http ...
- PHP5 Session 使用详解(一)
http协议是WEB服务器与客户端(浏览器)相互通信的协议,它是一种无状态协议.所谓无 状态,指的是不会维护http请求数据,http请求是独立的,不持久的.而越来越复杂的WEB应用,需要保存一些用户 ...
- linux下搭建Nginx
Linux上搭建nginx,及简单配置 在上家公司都是运维安装nginx,到新公司后代码开发完成部署测试服务器要求自己装nginx,研究了好久安装好之后,到正式上线还要自己安装,索性把安装步骤自己记 ...
- Leetcode 之Populating Next Right Pointers in Each Node II(51)
void connect(TreeLinkNode *root) { while (root) { //每一层循环时重新初始化 TreeLinkNode *prev = nullptr; TreeLi ...
- Linux LAMP环境搭建
什么是LAMP Linux+Apache+Mysql/MariaDB+Perl/PHP/Python一组常用来搭建动态网站或者服务器的开源软件,本身都是各自独立的程序,但是因为常被放在一起使用,拥有了 ...
- overflow-x和overflow-y其中一个设置为visible时的奇怪现象
当overflow-x和overflow-y其中一个设置为visible时,如果另一个不是visible,那么它会被自动重置为auto 看看效果先: 第一次遇到这个问题时,我还以为是chrome的一个 ...
- windows下批量删除文件
FORFILES /P d:\www /D -7 /S /M ex*.log /C "cmd /c del @path" 删除d:\www目录下7天前ex*.log的所有文件 例子 ...