奶牛互相之间有爱慕关系,找到被其它奶牛都喜欢的奶牛的数目

用tarjan缩点,然后判断有向图中出度为0的联通分量的个数,如果为1就输出联通分量中的点的数目,否则输出0.

算法源自kb模板

 #include<cstdio>
#include<iostream>
#include<cstring>
const int MAXN=;//点数
const int MAXM=;//边数
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
//num数组不一定需要,结合实际情况
int out[MAXN],tmp,Num,ans;
void addedge(int u,int v)
{
edge[tot].to=v;edge[tot].next=head[u];head[u]=tot++;
}
void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
for(int i=head[u];i != -;i=edge[i].next)
{
v=edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u] > Low[v])Low[u]=Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u]=DFN[v];
}
if(Low[u]==DFN[u])
{
scc++;
do
{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}
while(v != u);
}
}
void solve(int N)
{
memset(out,,sizeof(out));
memset(Belong,,sizeof(Belong));
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,,sizeof(num));
Index=scc=top=;
for(int i=;i <= N;i++)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot=;
memset(head,-,sizeof(head));
}
int main()
{
int n,m;
int i,j,v;
//freopen("1.in","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
int q,p;
for(i=;i<=m;i++)
{
scanf("%d%d",&p,&q);
addedge(p,q);
}
solve(n);
for(i=;i<=n;i++)
{
for(v=head[i];v!=-;v=edge[v].next)
{
if(Belong[i]!=Belong[edge[v].to])
{
out[Belong[i]]++;
}
}
}
ans=,Num=;
for(i=;i<=scc;i++)
{
if(!out[i])
{
Num++;
tmp = i;
}
}
if(Num==)
{
for(i=;i<=n;i++)
{
if(Belong[i]==tmp)
ans++;
}
printf("%d\n",ans);
}
else
{
printf("0\n");
}
}
return ;
}

poj 2186 有向图强连通分量的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  5. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  6. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  7. POJ3180(有向图强连通分量结点数>=2的个数)

    The Cow Prom Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1451   Accepted: 922 Descr ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. hdu1269(有向图强连通分量)

    hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> ...

随机推荐

  1. 修改php执行用户,并使其拥有root权限

    useradd apachephp vi /etc/httpd/conf/httpd.conf 将组和用户修改成apachephp,重启apache,然后用lsof -i:80查看apache的执行用 ...

  2. 转:Java NIO系列教程(二) Channel

    Java NIO的通道类似流,但又有些不同: 既可以从通道中读取数据,又可以写数据到通道.但流的读写通常是单向的. 通道可以异步地读写. 通道中的数据总是要先读到一个Buffer,或者总是要从一个Bu ...

  3. POP3,全名为“Post Office Protocol - Version 3”,即“邮局协议版本3”

    POP3 锁定 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . POP3,全名为“Post Office Protocol - Version 3”,即“邮局协议版本3”.是TCP/IP ...

  4. C#中的volatile用法

    volatile 影响编译器编译的结果,指出,volatile 变量是随时可能发生变化的,与volatile变量有关的运算,不要进行编译优化,以免出错,(VC++ 在产生release版可执行码时会进 ...

  5. NBUT1541 Rainwater 题解

    http://cdn.ac.nbutoj.com/Problem/view.xhtml?id=1541 When rain, nocLyt discovered a magical phenomeno ...

  6. FineUI第六天---表单控件

    表单控件 所有表单控件都有的属性有: ShowLabel:是否显示标签(默认值:true). ShowEmptyLabel:是否显示空白的标签(默认值:false). Label:标签文本(默认值:& ...

  7. GLUT教程 - 安装

    转载:http://www.cnblogs.com/live41/p/3368830.html glut库 - 下载频道 - CSDN.NEThttp://download.csdn.net/down ...

  8. HDOJ 1022 模拟栈

    Train Problem I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. android menu showAsAction属性

    app中有一个菜单(menu),showAsAction主要是针对这个菜单的显示起作用的,它有三个可选项:always:总是显示在界面上 never:不显示在界面上,只让出现在右边的三个点中 ifRo ...

  10. 【Spring】Spring系列6之Spring整合Hibernate

    6.Spring整合Hibernate 6.1.准备工作 6.2.示例 com.xcloud.entities.book com.xcloud.dao.book com.xcloud.service. ...