TensorFlow Data模块
模块作用
tf.data api用于创建训练前导入数据和数据处理的pipeline,使得处理大规模数据,不同数据格式和复杂数据处理变的容易。
基本抽象
提供了两种基本抽象:Dataset和Iterator
Dataset
表示元素序列集合,每个元素包含一个或者多个Tensor对象,每个元素是一个样本。有两种方式可以创建Dataset。
- 从源数据创建,比如:Dataset.from_tensor_slices()
- 通过数据处理转换创建,比如 Dataset.map()/batch()
Iterator
用于从Dataset获取数据给训练作为输入,作为输入管道和训练代码的接口。最简单的例子是“one-shot iterator”,和一个dataset绑定并返回它的元素一次。通过调整初始化参数,可以实现一些复杂场景的需求,比如循环迭代训练集的元素。
基本机制
基本使用的流程如下:
1. 创建一个dataset
2. 做一些数据处理(map, batch)
3. 创建一个iterator提供给训练使用
数据结构
每个元素都有相同的数据结构,每个元素包含一个或者多个tensor,可以元组表示或者嵌套表示。每个tensor包含类型tf.DType和维度形状tf.TensorShape。每个tensor可以有名称,通过collections.namedtuple或者字典实现。
Dataset的数据处理接口能够支持任意数据结构。
创建Iterator
有了dataset以后,下一步就是创建一个iterator提供访问数据元素的接口,现在tf.data api支持4中iterator来实现不同程度的复杂场景。
- one-shot,
- initializable,
- reinitializable
- feedable.
one-shot
最简单,最常用,就是一次遍历所有元素,目前(2019/08)也是estimator唯一支持的iterator。
initializable
需要显示运行初始化操作,可以通过tf.placeholder参数化dataset。
reinitializalbe
可以从多个dataset多次初始化,当然需要相同数据结构。每次切换数据集,使用前需要初始化,
feedable
可以从多个dataset多次初始化,初始化完毕后,可以通过tf.placeholder随时切换数据集。
获取iterator的值
通过session.run(iterator.get_next())完成,若没有数据了则报异常:tf.errors.OutOfRangeError。
iterator.get_next()返回的是tf.Tensor对象,需要在session中执行才会有值。
保存iterator状态
save and restore the current state of the iterator (and, effectively, the whole input pipeline). 能将整个输入pipeline保存并恢复(原理是什么?)
saveable = tf.contrib.data.make_saveable_from_iterator(iterator)
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, saveable)
saver = tf.train.Saver()
读取输入数据
直接读取numpy的数据得到array,调用Dataset.from_tensor_slices
读取TFRecord data: dataset = tf.data.TFRecordDataset(filenames)
通过文件的方式,可以支持不能够全部导入内存中的场景。tf.data.TFRcordDataset将读取数据流作为整个输入流的一部分。
同时,文件名可以通过tf.placeholder传入。
这里所有的dataset的返回,也都是tensorflow中的operation,需要在session中计算得到值。
解析tf.Example
推荐情形下,输入需要从TFRecord文件格式读取TF Example的protocol buffer messages,每个TF Example包含一个或者多个features,输入管道需要将其转换为tensor。
典型列子
# Transforms a scalar string `example_proto` into a pair of a scalar string and# a scalar integer, representing an image and its label, respectively.
def _parse_function(example_proto):
features = {"image": tf.FixedLenFeature((), tf.string, default_value=""), "label": tf.FixedLenFeature((), tf.int64, default_value=0)}
parsed_features = tf.parse_single_example(example_proto, features) return parsed_features["image"], parsed_features["label"]
# Creates a dataset that reads all of the examples from two files, and extracts
# the image and label features.
filenames = ["/var/data/file1.tfrecord", "/var/data/file2.tfrecord"]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(_parse_function)
对于图像,可以通过tf.image.decode_jpeg等方式提取和resize。
任意的python逻辑处理数据情形
在文本当中,比如有时候需要调用其他python库,比如jieba,这时候输入处理需要通过t'f.py_func()opeation完成。
Batching dataset elements
简单batch
调用Dataset.batch()实现,所有元素包含同样的数据结构。
带Padding的batch
当所有元素包含不同长度的数据结构时,可以通过padding使得单个batch数据长度一致。序列模型情形下。制定padding的shape为可变长度,比如(None,)来完成,会自动padding到单个batch的最大长度。当然,可以重写padding的值或者padding的长度。
训练流程
多批次遍历
tf.data提供了两种遍历数据的方式
想要遍历数据多次,可以使用Dataset.repeat(n)操作完成。遍历n次对应多少次epochs。若不提供参数,则将无限循环。同时,将不会给出一个批次结束的信号。
若想在每个批次结束后做处理,则需要在外围加循环,然后通过重复初始化迭代器完成,捕捉tf.errors.OutOfRangeError异常。
随机shuffle
dataset.shuffle()维持一个缓存区,随机取下一个数据。
高阶API
tf.train.MonitoredTrainingSession 接口简化了分布式Tensorflow的很多方面。MonitoredTrainingSession 用tf.error.OutOfRangeError来获取训练是否结束,所以推荐采用one-shot 迭代器。
用dataset作为estimator的输入函数时,直接将dataset返回,estimator会自动创建迭代器并初始化。
TensorFlow Data模块的更多相关文章
- jQuery1.9.1源码分析--数据缓存Data模块
jQuery1.9.1源码分析--数据缓存Data模块 阅读目录 jQuery API中Data的基本使用方法介绍 jQuery.acceptData(elem)源码分析 jQuery.data(el ...
- 读Zepto源码之Data模块
Zepto 的 Data 模块用来获取 DOM 节点中的 data-* 属性的数据,和储存跟 DOM 相关的数据. 读 Zepto 源码系列文章已经放到了github上,欢迎star: reading ...
- TensorFlow saved_model 模块
最近在学tensorflow serving 模块,一直对接口不了解,后面看到这个文章就豁然开朗了, 主要的困难在于 tf.saved_model.builder.SavedModelBuilde ...
- tensorflow data's save and load
note: if you'll load data,the data shape should be similar with saved data's shape. -- 中式英语,天下无敌 ...
- 服务器安装tensorflow导入模块报错Illegal instruction (core dumped)
在ubuntu上安装tensorflow后导入模块显示Illegal instruction (core dumped) 服务器的版本是Ubuntu 16.04.5 降低版本,成功导入模块 pip3 ...
- tensorflow mnist模块详解
tensorflow的官方文档是以mnist数据集为例子开始的.文档本身没有介绍tensorflow.contrib.learn.python.learn.datasets.mnist模块.要想用te ...
- 使用tensorflow.data.Dataset构造batch数据集(具体用法在下一篇博客介绍)
import tensorflow as tf import numpy as np def _parse_function(x): num_list = np.arange(10) return n ...
- Python pandas.io.data 模块迁移
这段时间用pandas做数据分析, import pandas.io.data as web 然后得到下面的错误提示 "The pandas.io.data module is moved ...
- data模块
这个模块原本应该存放Excel文件,提供utils目录下的config模块调用: 这里公司内部无法使用Excel读取数据,顾使用了ddt,其实里面就是.xslx文件
随机推荐
- C++模版的用法
模板是实现代码重用机制的一种工具,实质就是实现类型参数化,即把类型定义为参数. C++提供两种模板:函数模板,类模板 函数模板 template <typename T> T myMax( ...
- 删除git中缓存的用户名和密码
我们使用Git命令去clone Gitlab仓库的代码时,第一次弹框提示输入账号密码的时候输错了,然后后面就一直拒绝,不再重复提示输入账号密码,怎么破? git报错信息 运行一下命令缓存输入的用户名和 ...
- 宏旺半导体浅谈存储芯片LPDDR4X与UFS2.1的差别
现在市面上手机参数动不动就是8GB+128GB,手机的这些参数是越大越好吗?这些数字代表什么?宏旺半导体ICMAX给大家科普下. 手机的运行内存RAM——LPDDR4X LPDDR4X为RAM(运存) ...
- [POI2007]洪水pow 题解
[POI2007]洪水pow 时间限制: 5 Sec 内存限制: 128 MB 题目描述 AKD市处在一个四面环山的谷地里.最近一场大暴雨引发了洪水,AKD市全被水淹没了.Blue Mary,AKD ...
- [原创]lvs+ospf+nginx实现高可用大流量web架构
lvs+ospf+nginx实现高可用大流量web架构配置总概述 架构图: 配置如下: .quagga之zebra配置: # cat /etc/quagga/zebra.conf ! ! Zebra ...
- Eclipse安装STS插件
由于Spring的配置文件较多,基于Eclipse配置也比较复杂.为了提高开发的效率,建议使用STS开发工具开发,或者在Eclipse安装一个STS插件. 在开发者配置bean的class时候能够根据 ...
- duilib加消息
一.加消息 1. public INotifyUI, 2. void Notify(TNotifyUI& msg); 3. Notify实现 4. m_pManager->AddNoti ...
- 实现一个代码自动生成(一):模板引擎Freemarker
目录 前言 模板引擎FreeMarker 前言 在现在的开发当中,代码生成已经是必不可少的一个功能,每个公司都会有自己的一套定制的项目骨架,而实现代码自动生成,模板引擎是必不可少的,所以在这篇博客中, ...
- python面向过程编程 - ATM
前面程序整合加自定义日志 1.文件摆放 ├── xxxx │ ├── src.py │ └── fil_mode.py │ └── data_time.py │ └── loading.py │ └─ ...
- LeetCode_32
LeetCode 32 题目描述: 给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 1: 输入: "(()" 输出: 2 解释: 最长有效 ...