完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980

第15章       STM32H7的GPIO基础知识(重要)

本章教程为大家讲解GPIO(General-purpose I/Os)基础知识。GPIO配置是所有外设驱动的基础,大家务必要熟练掌握。

15.1 初学者重要提示

15.2 GPIO功能简介

15.3 GPIO功能模式分析(重要)

15.4 GPIO的拉电流负载和灌电流负载能力

15.5 IO补偿单元,用于高速

15.6 GPIO兼容CMOS和TTL电平

15.7 不使用的引脚推荐设为模拟模式

15.8 总结

15.1 初学者重要提示

  1. 学习本章节务必要认真学习并掌握15.3小节GPIO功能模式分析,学好它们,对后续章节中外设的学习大有裨益。
  2. 对于不使用的引脚,推荐设置为模拟模式,悬空即可。
  3. GPIO的速度等级高的时候,最好使能IO补偿单元。
  4. GPIO还涉及到一个注入电流的问题,此贴可以作为了解:http://www.armbbs.cn/forum.php?mod=viewthread&tid=87675

15.2 GPIO功能简介

STM32H7的GPIO特性如下:

  • 输出状态:开漏/推挽 + 上拉/下拉电阻。
  • 通过输出数据寄存器(GPIOx_ODR)或者外设(GPIO设置为复用模式时)输出数据。
  • GPIO速度等级设置。
  • 输入状态:浮空,上拉/下拉,模拟。
  • 通过输入数据寄存器(GPIOx_IDR)或者外设(GPIO设置为复用模式)输入数据。
  • 通过寄存器GPIOx_BSRR实现对寄存器GPIOx_ODR的位操作。
  • 通过配置寄存器GPIOx_LCKR的锁机制,实现冻结IO口配置。
  • 每两个时钟周期就可以翻转一次IO。
  • 高度灵活的引脚复用功能,允许IO引脚既可以做GPIO也可以做功能复用。

15.3 GPIO功能模式分析(重要)

STM32H7的GPIO端口可以配置为如下的8种模式:

  • 输入浮空
  • 输入上拉
  • 输入下拉
  • 模拟功能
  • 具有上拉或下拉功能的开漏输出
  • 具有上拉或下拉功能的推挽输出
  • 具有上拉或下拉功能的复用功能推挽
  • 具有上拉或下拉功能的复用功能开漏

由于上拉和下拉是可选配置,对应的HAL库配置使用下面6种就可以表示:

  • GPIO_MODE_INPUT 输入模式
  • GPIO_MODE_OUTPUT_PP 推挽输出
  • GPIO_MODE_OUTPUT_OD 开漏输出
  • GPIO_MODE_AF_PP   复用推挽
  • GPIO_MODE_AF_OD  复用开漏
  • GPIO_MODE_ANALOG 模拟模式

15.3.1 推挽输出

推挽电路是两个参数相同的三极管或 MOSFET,以推挽方式存在于电路中。 电路工作时,两只对称的开关管每次只有一个导通,导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级提高电路的负载能力。 相对于开漏输出模式,推挽输出最大优势是输出高电平时,上升时间快,电压驱动能力强。

15.3.2 开漏输出

开漏端相当于 MOS 管的漏极(三极管的集电极),要得到高电平状态必须外接上拉电阻才行,因此输出高电平的驱动能力完全由外接上拉电阻决定,但是其输出低电平的驱动能力很强。开漏形式的电路有以下几个特点:

  1. 输出高电平时利用外部电路的驱动能力,减少 IC 内部的驱动。
  2. 开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平。如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。上拉电阻的阻值决定了逻辑电平转换的速度。阻值越大,速度越低,功耗越小。
  3. 开漏输出提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
  4. 可以将多个开漏输出连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系,即“线与”。可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑 0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为 0,只有都为高电平时,与的结果才为逻辑 1。

15.3.3 复用推挽和开漏

复用指的是GPIO切换到CPU内部设备(比如SPI,I2C,UART等电路),也就是GPIO不是作为普通IO使用,是由内部设备直接驱动。推挽和开漏的特征同上。

15.3.4 四种输入模式

通过上面的引脚结构图可以得到如下三种方式

  • 浮空输入:CPU内部的上拉电阻、下拉电阻均断开的输入模式。
  • 下拉输入:CPU内部的下拉电阻使能、上拉电阻断开的输入模式。
  • 上拉输入:CPU内部的上拉电阻使能、下拉电阻断开的输入模式。

而模拟输入模式是GPIO引脚连接内部ADC。

15.4 GPIO的拉电流负载和灌电流负载能力

这里先普及点小知识,什么是拉电流负载,什么是灌电流负载。

  • 拉电流负载:一种负载电流从驱动门流向外电路,称为拉电流负载。比如使用STM32H7的GPIO直接驱动LED就是拉电流形式。

  • 灌电流负载:负载电流从外电路流入驱动门,称为灌电流负载。比如下面这种形式的LED驱动电路

有了上面这些知识后再来看STM32H7的IO驱动能力(截图来自STM32H7参考手册):

通过上面的截图可知:STM32H7总的拉电流和灌电流不可超过140mA,单个引脚最大不可超过20mA,这个知识点,大家要知道。

15.5 IO补偿单元,用于高速

IO补偿单元用于控制I/O通信压摆率(tfall / trise)以此来降低I/O噪声。当前STM32H7的速度等级可以配置为以下四种:

/** @defgroup GPIO_speed_define  GPIO speed define
* @brief GPIO Output Maximum frequency
* @{
*/
#define GPIO_SPEED_FREQ_LOW ((uint32_t)0x00000000U) /*!< Low speed */
#define GPIO_SPEED_FREQ_MEDIUM ((uint32_t)0x00000001U) /*!< Medium speed */
#define GPIO_SPEED_FREQ_HIGH ((uint32_t)0x00000002U) /*!< Fast speed */
#define GPIO_SPEED_FREQ_VERY_HIGH ((uint32_t)0x00000003U) /*!< High speed */

使用后两种速度等级的话,最好使能IO补偿单元。另外不同速度等级下,IO补偿使能与否对IO最大速度的影响可以看此贴:http://www.armbbs.cn/forum.php?mod=viewthread&tid=87677

15.6 GPIO兼容CMOS和TTL电平

CMOS和TTL电平兼容问题也是一个比较重要的知识点,关于这方面的知识已经在论坛进行了总结(由于截图较多,较长,就不整理到教程里面了):http://www.armbbs.cn/forum.php?mod=viewthread&tid=87676

15.7 不使用的引脚推荐设置为模拟模式

主要从功耗和防干扰考虑。

  • 所有用作带上拉电阻输入的 I/O都会在引脚外部保持为低时产生电流消耗。此电流消耗的值可通过使用的静态特性中给出的上拉 / 下拉电阻值简单算出。
  • 对于输出引脚,还必须考虑任何外部下拉电阻或外部负载以估计电流消耗。
  • 若外部施加了中间电平,则额外的 I/O 电流消耗是因为配置为输入的 I/O。此电流消耗是由用于区分输入值的输入施密特触发器电路导致。除非应用需要此特定配置,否则可通过将这些I/O 配置为模拟模式以避免此供电电流消耗。 ADC 输入引脚应配置为模拟输入就是这种情况。
  • 任何浮空的输入引脚都可能由于外部电磁噪声,成为中间电平或意外切换。为防止浮空引脚相关的电流消耗,它们必须配置为模拟模式,或内部强制为确定的数字值。这可通过使用上拉 / 下拉电阻或将引脚配置为输出模式做到。

综上考虑,不使用的引脚设置为模拟模式,悬空即可。

15.8 总结

本章节就为大家讲解这么多,其中GPIO功能模式小节(本章15.3)最重要,大家务必要掌握。

【STM32H7教程】第15章 STM32H7的GPIO基础知识(重要)的更多相关文章

  1. 【RL-TCPnet网络教程】第31章 Telnet远程登录基础知识

    第31章      Telnet远程登录基础知识 本章节为大家讲解Telnet (Teletype Network) 的基础知识,方便后面章节的实战操作. (本章的知识点主要整理自网络) 31.1   ...

  2. 【RL-TCPnet网络教程】第29章 NTP网络时间协议基础知识

    第29章      NTP网络时间协议基础知识 本章节为大家讲解NTP (Network Time Protocol,网络时间协议)和SNTP(简单网络时间协议,Simple Network Time ...

  3. 【RL-TCPnet网络教程】第2章 嵌入式网络协议栈基础知识

    第2章        嵌入式网络协议栈基础知识 本章教程为大家介绍嵌入式网络协议栈基础知识,本章先让大家有一个全面的认识,后面章节中会为大家逐一讲解用到的协议. 基础知识整理自百度百科,wiki百科等 ...

  4. 【RL-TCPnet网络教程】第12章 TCP传输控制协议基础知识

    第12章      TCP传输控制协议基础知识 本章节为大家讲解TCP(Transmission Control Protocol,传输控制协议),通过本章节的学习,需要大家对TCP有个基本的认识,方 ...

  5. Python黑帽编程3.0 第三章 网络接口层攻击基础知识

    3.0 第三章 网络接口层攻击基础知识 首先还是要提醒各位同学,在学习本章之前,请认真的学习TCP/IP体系结构的相关知识,本系列教程在这方面只会浅尝辄止. 本节简单概述下OSI七层模型和TCP/IP ...

  6. NodeJs>------->>第三章:Node.js基础知识

    第三章:Node.js基础知识 一:Node.js中的控制台 1:console.log.console.info  方法 console.log(" node app1.js 1> ...

  7. 16第一章 ASP.Net编程基础知识

    第一章        ASP.Net编程基础知识 第一章        ASP.Net编程基础知识 本章首先介绍用ASP.Net技术编制服务器端动态网页所需的网络和HTML标记语言方面的有关知识.然后 ...

  8. GPIO基础知识

    STM32 GPIO入门知识 GPIO是什么? 通用输入输出端口,可以做输入,也可以做输出.GPIO端口可通过程序配置成输入或输出. 引脚和GPIO的区别和联系 STM32的引脚中,有部分是做GPIO ...

  9. The Swift Programming Language-官方教程精译Swift(2)基础知识

    Swift 的类型是在 C 和 Objective-C 的基础上提出的,Int是整型:Double和Float是浮点型:Bool是布尔型:String是字符串.Swift 还有两个有用的集合类型,Ar ...

随机推荐

  1. Custom Diagrams

    Custom Diagrams https://github.com/dbeaver/dbeaver/wiki/Custom-Diagrams You can create custom ER dia ...

  2. [洛谷P1373][题解]小a和uim之大逃离

    (别点我我不是题目) 这道题可以很容易看出是一道dp(因为是在dp关卡里找的) 稍微想一下就可以yy出一个不错的状态: f[i][j][k][0/1]代表走到了点(i,j).膜液量相差k(小a-uim ...

  3. SQL Server事务复制(sql 2008 r2)

    一.环境准备 1.两个虚拟服务器 主机1:XINXIBU01  作为发布和分发服务器   主 机2:XINXIBU02 192.168.1.160  作业阅服务器 2.SQL SERVER sql 2 ...

  4. c++ 的namespace及注意事项

    前文 下文中的出现的"当前域"为"当前作用域"的简写 namepsace在c++中是用来避免不同模块下相同名字冲突的一种关键字,本文粗略的介绍了一下namesp ...

  5. Django中获取参数(路径,查询,请求头,请求体)

    一.通常HTTP协议向服务器传参有几种途径 : 提取URL的特定部分,如/weather/shanghai/2018,可以在服务器端的路由中用正则表达式截取: 查询字符串(query string), ...

  6. ueditor设置

    1: 2:

  7. @Transactional注解失效

    一.特性 先来了解一下@Transactional注解事务的特性吧,可以更好排查问题 1.service类标签(一般不建议在接口上)上添加@Transactional,可以将整个类纳入spring事务 ...

  8. Dicom文件支持中文字符

    Dicom文件的默认字符集编码为ISO-IR6,这种字符集是不支持中文的,当使用Dicom工具修改病人姓名后,名字会成乱码而无法正常显示,如下图: 知道了原因就知道解决办法了,修改Dicom的字符集( ...

  9. tensorflow中卷积、转置卷积具体实现方式

    卷积和转置卷积,都涉及到padding, 那么添加padding 的具体方式,就会影响到计算结果,所以搞清除tensorflow中卷积和转置卷积的具体实现有助于模型的灵活部署应用. 一.卷积 举例说明 ...

  10. 在 Linux 下学习 C 语言有什么好处?

    作者:宅学部落链接:https://www.zhihu.com/question/23893390/answer/832610610来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...