系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

第5章 多入单出的单层神经网络

5.0 多变量线性回归问题

5.0.1 提出问题

问题:在北京通州,距离通州区中心15公里的一套93平米的房子,大概是多少钱?

房价预测问题,成为了机器学习的一个入门话题,著名的波士顿的房价数据及相关的比赛已经很多了,但是美国的房子都是独栋的,前院后院停车库游泳池等等参数非常多,初学者可能理解起来有困难。我们不妨用简化版的北京通州的房价来举例,感受一下房价预测的过程。

影响北京通州房价的因素有很多,居住面积、地理位置、朝向、学区房、周边设施、建筑年份等等,其中,面积和地理位置是两个比较重要的因素。地理位置信息一般采用经纬度方式表示,但是经纬度是两个特征值,联合起来才有意义,因此,我们把它转换成了到通州区中心的距离。

我们有1000个样本,每个样本有两个特征值,一个标签值,示例如表5-1。

表5-1 样本数据

样本序号 地理位置 居住面积 价格(万元)
1 10.06 60 302.86
2 15.47 74 393.04
3 18.66 46 270.67
4 5.20 77 450.59
... ... ... ...
  • 特征值1 - 地理位置,统计得到:

    • 最大值:21.96公里
    • 最小值:2.02公里
    • 平均值:12.13公里
  • 特征值2 - 房屋面积,统计得到:
    • 最大值:119平米
    • 最小值:40平米
    • 平均值:78.9平米
  • 标签值 - 房价,单位为百万元:
    • 最大值:674.37
    • 最小值:181.38
    • 平均值:420.64

这个数据是三维的,所以可以用两个特征值作为x和y,用标签值作为z,在xyz坐标中展示如表5-2。

表5-2 样本在三维空间的可视化

正向 侧向

从正向看,很像一块草坪,似乎是一个平面。再从侧向看,和第4章中的直线拟合数据很像。所以,对于这种三维的线性拟合,我们可以把它想象成为拟合一个平面,这个平面会位于这块“草坪”的中位,把“草坪”分割成上下两块更薄的“草坪”,最终使得所有样本点到这个平面的距离的平方和最小。

5.0.2 多元线性回归模型

由于表中可能没有恰好符合15公里、93平米条件的数据,因此我们需要根据1000个样本值来建立一个模型,来解决预测问题。

通过图示,我们基本可以确定这个问题是个线性回归问题,而且是典型的多元线性回归,即包括两个或两个以上自变量的回归。多元线性回归的函数模型如下:

\[y=a_0+a_1x_1+a_2x_2+\dots+a_kx_k\]

具体化到房价预测问题,上面的公式可以简化成:

\[
z = x_1 \cdot w_1 + x_2 \cdot w_2 + b
\]

抛开本例的房价问题,对于一般的应用问题,建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

  1. 自变量对因变量必须有显著的影响,并呈密切的线性相关;
  2. 自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
  3. 自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
  4. 自变量应具有完整的统计数据,其预测值容易确定。

5.0.3 解决方案

如果用传统的数学方法解决这个问题,我们可以使用正规方程,从而可以得到数学解析解,然后再使用神经网络方式来求得近似解,从而比较两者的精度,再进一步调试神经网络的参数,达到学习的目的。

我们不妨先把两种方式在这里做一个对比,读者阅读并运行代码,得到结果后,再回到这里来仔细体会表5-3中的比较项。

表5-3 两种方法的比较

方法 正规方程 梯度下降
原理 几次矩阵运算 多次迭代
特殊要求 \(X^TX\)的逆矩阵存在 需要确定学习率
复杂度 \(O(n^3)\) \(O(n^2)\)
适用样本数 \(m \lt 10000\) \(m \ge 10000\)

[ch05-00] 多变量线性回归问题的更多相关文章

  1. deep learning 练习 多变量线性回归

    多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/Document ...

  2. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  5. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  6. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  7. Andrew Ng机器学习第五章——多变量线性回归

    一.多变量线性回归的技巧之一——特征缩放 1.为什么要使用特征缩放? 特征缩放用来确保特征值在相似的范围之内. 设想这样一种情况(房价预测),两个特征值分别是房子的大小和卧室的数量.每个特征值所处的范 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归

    Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...

  9. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  10. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

随机推荐

  1. 描述Linux发行版的系统目录名称命名规则以及用途

    linux各种发行版都遵循LSB(Linux Stadards Base)规则,使用一致的相关的基础目录名称,使用根目录系统结构(root filesystem),使用FHS(Files Hierar ...

  2. P4544 [USACO10NOV]购买饲料Buying Feed

    额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...

  3. ElasticSearch(二):文档的基本CRUD与批量操作

    ElasticSearch(二):文档的基本CRUD与批量操作 学习课程链接<Elasticsearch核心技术与实战> Create 文档 支持自动生成文档_id和指定文档_id两种方式 ...

  4. [UWP]为番茄钟应用设计一个平平无奇的状态按钮

    1. 为什么需要设计一个状态按钮 OnePomodoro应用里有个按钮用来控制计时器的启动/停止,本来这应该是一个包含"已启动"和"已停止"两种状态的按钮,但我 ...

  5. git下载安装

    git是目前最流行的分布式版本控制系统,使用它可以很方便的对项目进行管理备份. 1.git下载 登录git官网https://git-scm.com/,点击downloads即可下载安装包 安装包如下 ...

  6. python 类内部装饰器的实现 与 参数解构学习

    学习了函数的装饰器的写法,然后想到如果要在类中初始化或获取信息时能用装饰器做过滤和验证应该怎么写呢, 在网上查了下相关信息,感觉这样也是可以的,不知道会不会有什么问题class Ctj(): clas ...

  7. mysql查询不重复的行内容,不重复的记录数.count,distinct

    有这么一个表 记录了id, p_id, p_name , p_content , p_time 1  343        aaa            aaaaaa   2012-09-01 2   ...

  8. Idea集成SpringBoot实现两种热部署方式(亲测有效)

    即将介绍的两种热部署方式: 1.SpringLoaded 2.DevTools 区别: SpringLoader:SpringLoader 在部署项目时使用的是热部署的方式. DevTools:Dev ...

  9. 腾讯Techo开发者大会PPT分享

    腾讯云年度的开发者大会已经落幕,大会包括1场前沿技术主峰会,18个技术专场,150位海内外技术专家,28个互动展区,8场动手实验室,23小时小程序云开发极限编程,1场数据库诊断大赛. 内容上涵盖了最新 ...

  10. Nginx Linux和Windows安装教程

    前言 本篇文章主要介绍的是Nginx Linux环境和Windows的安装教程. Nginx 介绍 Nginx("engine x")是一款是由俄罗斯的程序设计师Igor Syso ...