ContentLoss

首先是要定义一个内容差异损失函数,这里直接调用functional.mse_loss(input,self.target)就可以计算出其内容差异损失。

注意这里一般是定义一个网络模型,输入和输出一直,这样才在后面方便直接求出 loss

class ContentLoss(nn.Module):

    def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach() def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input

detach是使他不能求梯度

StyleLoss

这里是定义风格差异损失函数,首先就先定一个一个gram函数来求 c*c c为层数

def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) # resise F_XL into \hat F_XL G = torch.mm(features, features.t()) # compute the gram product # we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)

然后利用gram函数来求loss

class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach() def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input

新定义网络

然后将 ContentLoss和 StyleLoss 加入新定义的迁移网络(normalization见下面)

cnn = models.vgg19(pretrained=True).features.to(device).eval()

content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
cnn = copy.deepcopy(cnn) # normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device) # just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = [] # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
# model = nn.Sequential()
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here. #********注意**************不能掉 vgg默认inplace=ture
layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) model.add_module(name, layer) if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss) if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss) # now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break model = model[:(i + 1)] return model, style_losses, content_losses

normalization模型

cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) # create a module to normalize input image so we can easily put it in a
# nn.Sequential class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, img):
# normalize img
return (img - self.mean) / self.std

输入参数定义

input_img = content_img.clone()
optimizer = optim.LBFGS([input_img.requires_grad_()])
两种方式
#input_param = nn.Parameter(input_img.data)
#optimizer = optim.LBFGS([input_param])

更新input_img

注意梯度共轭和LBFGS 方法更新梯度的时候 要用闭包的形式

def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, num_steps=300,
style_weight=500000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
# optimizer = get_input_optimizer(input_img) print('Optimizing..')
run = [0]
while run[0] <= num_steps: def closure():
# correct the values of updated input image
input_img.data.clamp_(0, 1) optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0 for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight loss = style_score + content_score
loss.backward() run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print() return style_score + content_score
optimizer.step(closure) # a last correction...
input_img.data.clamp_(0, 1) return input_img

其余代码参考 https://pytorch.org/tutorials/advanced/neural_style_tutorial.html#sphx-glr-advanced-neural-style-tutorial-py

neural_transfer风格迁移的更多相关文章

  1. 图像风格迁移(Pytorch)

    图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \fr ...

  2. keras图像风格迁移

    风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss) ...

  3. Gram格拉姆矩阵在风格迁移中的应用

    Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向 ...

  4. 『cs231n』通过代码理解风格迁移

    『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...

  5. Keras实现风格迁移

    风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...

  6. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  7. Distill详述「可微图像参数化」:神经网络可视化和风格迁移利器!

    近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力 ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...

随机推荐

  1. 【题解】【P3383 【模板】线性筛素数】

    看完这篇博客你就懂了 原题链接 代码: #include<bits/stdc++.h> using namespace std; bool isPrime(int num) { if(nu ...

  2. (转)Vix_API 操作 VMware

    对虚拟机(VMware Workstation)进行程序控制,查询了VMware官方网站的一些内容,但调试的时候还是出现很多问题. 刚开始想通过命令行的方式控制虚拟机,但总是存在一些问题,到现在也没搞 ...

  3. C#3.0新增功能09 LINQ 基础01 语言集成查询

    连载目录    [已更新最新开发文章,点击查看详细] 语言集成查询 (LINQ) 是一系列直接将查询功能集成到 C# 语言的技术统称. 数据查询历来都表示为简单的字符串,没有编译时类型检查或 Inte ...

  4. Spark Week1 HomeWork

    package wikipedia import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org. ...

  5. LiteDB源码解析系列(3)索引原理详解

    在这一章,我们将了解LiteDB里面几个基本数据结构包括索引结构和数据块结构,我也会试着说明前辈数据之巅在博客中遇到的问题,最后对比mysql进一步深入了解LiteDB的索引原理. 1.LiteDB的 ...

  6. python基础知识练习题一

    1.执行Python脚本的两种方式 1.在计算机终端(运行cmd),输入安装的Python路径,然后输入Python脚本的路径,回车. 2.直接运行python 2.简述位.字节的关系. 1字节 = ...

  7. nodejs 获取客户端 ip 地址

    应用场景: php:我们需要拿到用户客户端的ip信息,以识别用户位置,但现在我们拿到的地址永远是杭州 前端:我查一下,稍等 .... 明白了,我们加了一层 node 服务器,服务器在杭州,你们拿到的是 ...

  8. activiti工作流委托功能的设计和实现

    最近公司开发一个项目,客户提出了一个需求,用户在出差的时候,可以将自己的工作进行委托.可以指定委托时间.委托工作内容.指定委托人等等内容. 然后我就上网查询资料,发现activiti工作流本身并不支持 ...

  9. LinkedList实现类

    List还有一个LinkedList的实现,它是一个基于链表实现的List类,对于顺序访问集合中的元素进行了优化,特别是当插入.删除元素时速度非常快.因为LinkedList即实现了List接口,也实 ...

  10. 当面对会反制遭破解装置的App该如何顺利提取数据

    在检测App的过程之中,总会遇到比较棘手的,以”侦测是否遭破解的装置”为例,便会是个不好处理的状况.当App具备侦测装置是否已遭Root时,一旦发现装置已遭破解,便会停止运行,等于是只准安装及运行在未 ...