[04] HEVD 内核漏洞之IntegerOverflow
作者:huity
出处:https://www.cnblogs.com/huity35/p/11252574.html
版权:本文版权归作者所有。文章在博客园、看雪、个人博客同时发布。
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任。
0x00 前言
0x01 漏洞原理
整数溢出
Demo(基于栈的整数溢出)
#include "stdio.h"
#include "string.h" int main()
{
int i;
char buf[];
unsigned short int size;
char overflow[]; memset(overflow,,sizeof(overflow)); printf("Input the num:\n");
scanf("%d",&i); size=i;
printf("size:%d\n",size);
printf("i:%d\n",i); if(size>)
return -;
memcpy(buf,overflow,i);//栈溢出 return ;
}
上面的demo中,size为无符号短整数(0-65535),当我们输入大于65535是就会造成溢出,例如我们输入65536,最终得到的size为0,从而绕过边界检查,但是在memcpy函数复制数据时,使用的是int类型的i参数,导致栈溢出。

Demo(基于堆的整数溢出)
#include "stdio.h"
#include "string.h"
#include "Windows.h"
int main()
{
int heap;
unsigned short int size;
char* v1,*v2;
HANDLE HeapHandle; printf("int put size: \n");
scanf("%d",&size); HeapHandle = HeapCreate(HEAP_GENERATE_EXCEPTIONS,0x100,0xfff); if(size <=0x50)
{
size-=;
printf("size:%d\n",size);
v1=(char*)HeapAlloc(HeapHandle,,size);
v2=(char*)HeapAlloc(HeapHandle,,0x50);
}
HeapFree(HeapHandle,,v1);
HeapFree(HeapHandle,,v2);
return ;
}
上述demo中size为unsigned short int,小于5时,例如,当size=2时,size减去5则得到负数,但size取值范围导致无法识别负数,而得到正数65533,而分配得到大的堆块,从而溢出导致覆盖到后面的堆管理结构。

分析
__declspec(safebuffers)
NTSTATUS TriggerIntegerOverflow( _In_ PVOID UserBuffer, _In_ SIZE_T Size)
{
ULONG Count = ;
NTSTATUS Status = STATUS_SUCCESS;
ULONG BufferTerminator = 0xBAD0B0B0;
ULONG KernelBuffer[BUFFER_SIZE] = { };//512*4=2048
SIZE_T TerminatorSize = sizeof(BufferTerminator);// PAGED_CODE(); __try
{
//
// UserBuffer 为Ring3地址 其中前面均用A填充,倒数8字节开始的4字节为Payload地址 最后四字节为0xBAD0B0B0
ProbeForRead(UserBuffer, sizeof(KernelBuffer), (ULONG)__alignof(UCHAR)); DbgPrint("[+] UserBuffer: 0x%p\n", UserBuffer);
DbgPrint("[+] UserBuffer Size: 0x%X\n", Size);
DbgPrint("[+] KernelBuffer: 0x%p\n", &KernelBuffer);
DbgPrint("[+] KernelBuffer Size: 0x%X\n", sizeof(KernelBuffer)); #ifdef SECURE
//
// 安全注意:这是安全的,因为开发人员没有对用户提供的值进行任何算术运算。
//相反,开发人员从KernelBuffer的大小减去ULONG的大小,即x86上的4。 因此,不会发生整数溢出,并且此检查不会失败 if (Size > (sizeof(KernelBuffer) - TerminatorSize))
{
DbgPrint("[-] Invalid UserBuffer Size: 0x%X\n", Size); Status = STATUS_INVALID_BUFFER_SIZE;
return Status;
}
#else
DbgPrint("[+] Triggering Integer Overflow (Arithmetic Overflow)\n"); // 注意这里是有漏洞的版本
if ((Size + TerminatorSize) > sizeof(KernelBuffer))//FFFFFFFF+4 = 00000003
{
DbgPrint("[-] Invalid UserBuffer Size: 0x%X\n", Size); Status = STATUS_INVALID_BUFFER_SIZE;
return Status;
}
#endif //实现拷贝操作
while (Count < (Size / sizeof(ULONG)))
{
if (*(PULONG)UserBuffer != BufferTerminator)
{
KernelBuffer[Count] = *(PULONG)UserBuffer;
UserBuffer = (PULONG)UserBuffer + ;
Count++;
}
else
{
break;
}
}
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
Status = GetExceptionCode();
DbgPrint("[-] Exception Code: 0x%X\n", Status);
}
return Status;
}
函数中比较了用户提交缓冲区长度和内核缓冲区长度,在有漏洞的版本中,这一比较采用了:
if ((Size + TerminatorSize) > sizeof(KernelBuffer))
我们在Windbg中同样可以看到这一问题:
97c4ba9f 8b450c mov eax,dword ptr [ebp+0Ch]
97c4baa2 0345d4 add eax,dword ptr [ebp-2Ch]
97c4baa5 3d00080000 cmp eax,800h kd> r eax
eax=
kd> r
eax= ebx= ecx=ffffffff edx=0000004d esi=86e61528 edi=860fff80
eip=97c80adb esp=9398f268 ebp=9398fab0 iopl= nv up ei ng nz na pe cy
cs= ss= ds= es= fs= gs= efl=
HEVD!TriggerIntegerOverflow+0x16b:
97c80adb 8b450c mov eax,dword ptr [ebp+0Ch] ss::9398fabc=ffffffff
kd> dd 9398fab0
9398fab0 9398fad4 97c80956 ffffffff
9398fac0 c0000001 ffffffff
9398fad0 9398fafc 97c800ae 86e6a870
9398fae0 86e6a8e0
9398faf0 c00000bb 86e6a8e0 9398fb14
9398fb00 83e7f593 86e61528 86e6a870 86e6a870
9398fb10 86e61528 9398fb34 8407399f 860fff80
9398fb20 86e6a870 86e6a8e0 0498fbac
0x02 漏洞利用
0x03 漏洞反思
0x04 链接
[04] HEVD 内核漏洞之IntegerOverflow的更多相关文章
- [02] HEVD 内核漏洞之栈溢出
作者:huity出处:http://www.cnblogs.com/huity35/版权:本文版权归作者所有.文章在看雪.博客园.个人博客同时发布.转载:欢迎转载,但未经作者同意,必须保留此段声明:必 ...
- [03] HEVD 内核漏洞之UAF
作者:huity出处:https://www.cnblogs.com/huity35/p/11240997.html版权:本文版权归作者所有.文章在博客园.个人博客同时发布.转载:欢迎转载,但未经作者 ...
- 内核漏洞学习—熟悉HEVD
一直以来内核漏洞安全给很多人的印象就是:难,枯燥.但是内核安全是否掌握是衡量一个系统安全工程师水平的标准之一,也是安全从业人员都应该掌握的基本功.本文通过详细的实例带领读者走进内核安全的大门.难度系数 ...
- 【翻译】 Windows 内核漏洞学习—空指针解引用
Windows Kernel Exploitation – NullPointer Dereference 原文地址:https://osandamalith.com/2017/06/22/windo ...
- Windows 内核漏洞学习—空指针解引用
原标题:Windows Kernel Exploitation – NullPointer Dereference 原文地址:https://osandamalith.com/2017/06/22/w ...
- CVE-2014-0038内核漏洞原理与本地提权利用代码实现分析 作者:seteuid0
关键字:CVE-2014-0038,内核漏洞,POC,利用代码,本地提权,提权,exploit,cve analysis, privilege escalation, cve, kernel vuln ...
- Android内核漏洞利用技术实战:环境搭建&栈溢出实战
前言 Android的内核采用的是 Linux 内核,所以在Android内核中进行漏洞利用其实和在 一般的 x86平台下的 linux 内核中进行利用差不多.主要区别在于 Android 下使用的是 ...
- Linux kernel pwn notes(内核漏洞利用学习)
前言 对这段时间学习的 linux 内核中的一些简单的利用技术做一个记录,如有差错,请见谅. 相关的文件 https://gitee.com/hac425/kernel_ctf 相关引用已在文中进行了 ...
- 初识linux内核漏洞利用
0x00 简介 之前只接触过应用层的漏洞利用, 这次第一次接触到内核层次的,小结一下. 0x01 概况 这次接触到的,是吾爱破解挑战赛里的一个题,给了一个有问题的驱动程序,要求在ubuntu 14.0 ...
随机推荐
- return view 详解 MVC
1.return View(); 返回值 类型:System.Web.Mvc.ViewResult将视图呈现给响应的 View() 结果. 注释 View() 类的此方法重载将返回一个具有空 View ...
- Docker最全教程之使用Node.js搭建团队技术文档站(二十三)
前言 各种编程语言均有其优势和生态,有兴趣的朋友完全可以涉猎多门语言.在平常的工作之中,也可以尝试选择相对适合的编程语言来完成相关的工作. 在团队技术文档站搭建这块,笔者尝试了许多框架,最终还是选择了 ...
- windows下nginx的安装和使用
LNMP的安装与配置 windows下的nginx安装和使用 1.1 去官网下载相应的安装包:http://nginx.org/en/download.html 1.2 解压后进入PowerShell ...
- 12 | 从0到1:你的第一个GUI自动化测试
- C++类的完美单元测试方案——基于C++11扩展的friend语法
版权相关声明:本文所述方案来自于<深入理解C++11—C++11新特性解析与应用>(Michael Wong著,机械工业出版社,2016.4重印)一书的学习. 项目管理中,C语言工程做单元 ...
- 深度优先(DFS)和广度优先(BFS)
深度优先(Depth-First-Search)和广度优先(Breadth-First-Search)是我们遍历图的两种方式,它们都属于穷举法,用来系统的遍历图中的所有顶点 关于如何再一个有向图/无向 ...
- 跟我学SpringCloud | 第十二篇:Spring Cloud Gateway初探
SpringCloud系列教程 | 第十二篇:Spring Cloud Gateway初探 Springboot: 2.1.6.RELEASE SpringCloud: Greenwich.SR1 如 ...
- flask高级编程 LocalStack 线程隔离
转:https://www.cnblogs.com/wangmingtao/p/9372611.html 30.LocalStack作为线程隔离对象的意义 30.1 数据结构 限制了某些能力 30 ...
- Design Principles (设计原则)
这是我在2018年4月写的英语演讲稿,可惜没人听得懂(实际上就没几个人在听). 文章的内容是我从此前做过的项目中总结出来的经验,从我们的寝室铃声入手,介绍了可扩展性.兼容性与可复用性等概念,最后提出良 ...
- Linux命令学习-mv命令
Linux中,mv命令的全称是move,主要作用是移动文件或文件夹,类似于Windows下的剪切功能,同时还可以用于修改名字. 假设当前处于wintest用户的主目录,路径为 /home/wintes ...