题目简介

n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100

题目分析

算法考虑

考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压Dp

算法分析

设dp[i][j][k]表示放了前i行,j列有1个棋子,k列有两个棋子

那么0个棋子就是m-j-k

然后就可以分类讨论了

情况一

第i行不放棋子:直接继承上一行状态,有:f[i][j][k]=f[i-1][j][k]

情况二

第i行只放一个棋子:

1、该棋放在只有一个棋的列上

有f[i][j][k]=f[i-1][j+1][k-1]*(j+1) 因为对于前i-1行,有一个棋子的一列少了1,而因为放置棋子,有两个的棋子又多了一列,又因为该棋子可以随便放在只有一个棋的列上,所以要乘(j+1)

有:f[i][j][k]=f[i-1][j+1][k-1]*(j+1)

2、该棋放在没有棋子的列上

同理,即f[i-1][j-1][k]可以转移到f[i][j][k]

又因为我在空列中的任何一列放置这个棋子.

所以要×(m-j-k+1)

有:f[i][j][k]=f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1);

情况三

第i行放两个棋子

1、放在一列一个的,一列没有棋子的列上

一个没有棋子的列会变成一个有一个棋子的列,而一个有一个棋子的列会变成一个有两个棋子的列。

此时我们发现,

有一个棋子的列的数量不会变,因此第二维依旧为j,

又因为我们会新增一个有两个棋子的列,所以我们需要从k-1转移过来.

有:f[i][j][k]=f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1)

2、放在两个没有棋子的列上

会增加两个新的有一个棋子的列.

因此我们需要从j-2转移过来.

而两个棋子的列的数量并不会改变,所以依旧为k

最后乘C(2,m-k-j+2),因为从没有棋子的列中任选两个

有:f[i][j][k]=f[i][j][k]+f[i-1][j-2][k]*C(2,m-k-j+2)

3、放在两个有一个棋子的列上

这两个有一个棋子的列都会变成有两个子的列.

即j+2变成j,从k-2变成k

最后乘C(2,j+2)因为从有一个棋子的列中任选两个

有:f[i][j][k]=f[i][j][k]+f[i-1][j+2][k-2]*C(2,j+2)

代码

#include<bits/stdc++.h>
#define re register
#define ll long long
using namespace std;
inline int read()
{
int k=1,sum=0;
char c=getchar();
for(;c<'0' || c>'9';c=getchar()) if(c=='-') k=-1;
for(;c>='0' && c<='9';c=getchar()) sum=sum*10+c-'0';
return sum*k;
}
int n,m;
const int MOD=9999973,N=1e2+10;
ll f[N][N][N];
inline int C(int x){
return ((x*(x-1))/2)%MOD;
}
int main()
{
n=read();m=read();f[0][0][0]=1;
for(re int i=1;i<=n;++i){
for(re int j=0;j<=m;++j){
for(re int k=0;k<=m-j;++k){
f[i][j][k]=f[i-1][j][k];
if(k>0 && j+1<=m) f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%MOD;
if(j>0) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1))%MOD;
if(k>0) f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1))%MOD;
if(k>1) f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*C(j+2))%MOD;
if(j>1) f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*C(m-k-j+2))%MOD;
f[i][j][k]%=MOD;
}
}
}
int ans=0;
for(re int j=0;j<=m;++j)
for(re int k=0;k<=m-j;++k)
ans=(ans+f[n][j][k])%MOD;
cout<<ans;
return 0;
}

洛谷P2051 [AHOI2009] 中国象棋(状压dp)的更多相关文章

  1. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  2. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  3. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  4. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  5. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  6. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  7. 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)

    洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...

  8. 洛谷 P1278 单词游戏 【状压dp】

    题目描述 Io和Ao在玩一个单词游戏. 他们轮流说出一个仅包含元音字母的单词,并且后一个单词的第一个字母必须与前一个单词的最后一个字母一致. 游戏可以从任何一个单词开始. 任何单词禁止说两遍,游戏中只 ...

  9. 洛谷P2704 [NOI2001]炮兵阵地 [状压DP]

    题目传送门 炮兵阵地 题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图 ...

随机推荐

  1. BeanCopier类

    网上学习了一番BeanCopier类. cglib是一款比较底层的操作java字节码的框架. 下面通过拷贝bean对象来测试BeanCopier的特性: public class OrderEntit ...

  2. Solve Hibernate Lazy-Init issue with hibernate.enable_lazy_load_no_trans

    I have been suffering from infamous hibernate exception org.hibernate.LazyInitializationException: c ...

  3. C++输入输出常用格式(cin,cout,stringstream)

    输入格式 1.cin>>a; 最基本的格式,适用于各种类型.会过滤掉不可见字符例如空格,TAB,回车等 2.cin>>noskipws>>ch[i]; 使用了 no ...

  4. Python—字符串和常用数据结构

    目录 1. 字符串 2. 列表 2.1 列表的增删改查 2.2 列表的切片和排序 2.3 生成式语法 3. 元组 4.集合 5. 字典 5.1 字典的增删改查 5.2 字典的常见操作 序言:这一章我们 ...

  5. Elastic Stack 笔记(六)Elasticsearch5.6 搜索详解

    博客地址:http://www.moonxy.com 一.前言 Elasticsearch 主要包含索引过程和搜索过程. 索引过程:一条文档被索引到 Elasticsearch 之后,默认情况下 ES ...

  6. The 10 Most Important Linux Commands/10个最经常使用的命令行

    1. ls 命令:to show all of the major directiories filed under a given file system. for example: ls /app ...

  7. Python 踩坑之旅文件系统篇其一文件夹也是个文件

    目录 1.1 案例 1.2 分析 1.3 扩展 1.4 技术关键字 下期预告 代码示例支持 平台: Mac OS Python: 2.7.10 代码示例: - wx: 菜单 - Python踩坑指南代 ...

  8. sersync 实时同步

    1.什么是实时同步 ​ 监控一个目录的变化, 当该目录触发事件(创建\删除\修改) 就执行动作, 这个动作可以是 rsync同步 ,也可以是其他. 2.为什么要实时同步 1.能解决nfs单点故障问题. ...

  9. Day 23 系统服务之救援模式

    1.CentOS6与Centos 7启动流程 4.运行级别C6&C7 0 关机 1 单用户模式 (超级权限 必须面对实体硬件) 2 暂未使用 3 字符界面(黑框) 4 暂未使用 5 图形界面 ...

  10. 如何从请求、传输、渲染3个方面提升Web前端性能

    什么是WEB前端呢?就是用户电脑的浏览器所做的一切事情.我们来看看用户访问网站,浏览器都做了哪些事情: 输入网址 –> 解析域名 -> 请求页面 -> 解析页面并发送页面中的资源请求 ...