图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
1. 图Lasso方法的基本理论




2. 坐标下降算法


3. 图Lasso算法


4. MATLAB程序
数据见参考文献[2]
4.1 方法一
demo.m
load SP500
data = normlization(data);
S = cov(data); %样本协方差
[X, W] = glasso_1(double(S), 0.5);
%X:sigma^(-1), W:sigma
[~, idx] = sort(info(:,3));
colormap gray
imagesc(X(idx, idx) == 0)
axis off %% Data Normalization
function data = normlization(data)
data = bsxfun(@minus, data, mean(data));
data = bsxfun(@rdivide, data, std(data));
end
glasso_1.m
function [X, W] = glasso_1(S, lambda)
%% Graphical Lasso - Friedman et. al, Biostatistics, 2008
% Input:
% S - 样本的协方差矩阵
% lambda - 罚参数
% Output:
% X - 精度矩阵 sigma^(-1)
% W - 协方差矩阵 sigma
%%
p = size(S,1); %数据维度
W = S + lambda * eye(p); %W=S+λI
beta = zeros(p) - lambda * eye(p); %β=-λI
eps = 1e-4;
finished = false(p); %finished:p*p的逻辑0矩阵
while true
for j = 1 : p
idx = 1 : p; idx(j) = [];
beta(idx, j) = lasso(W(idx, idx), S(idx, j), lambda, beta(idx, j));
W(idx, j) = W(idx,idx) * beta(idx, j); %W=W*β
W(j, idx) = W(idx, j);
end
index = (beta == 0);
finished(index) = (abs(W(index) - S(index)) <= lambda);
finished(~index) = (abs(W(~index) -S(~index) + lambda * sign(beta(~index))) < eps);
if finished
break;
end
end
X = zeros(p);
for j = 1 : p
idx = 1 : p; idx(j) = [];
X(j,j) = 1 / (W(j,j) - dot(W(idx,j), beta(idx,j)));
X(idx, j) = -1 * X(j, j) * beta(idx,j);
end
% X = sparse(X);
end
lasso.m
function w = lasso(A, b, lambda, w)
% Lasso
p = size(A,1);
df = A * w - b;
eps = 1e-4;
finished = false(1, p);
while true
for j = 1 : p
wtmp = w(j);
w(j) = soft(wtmp - df(j) / A(j,j), lambda / A(j,j));
if w(j) ~= wtmp
df = df + (w(j) - wtmp) * A(:, j); % update df
end
end
index = (w == 0);
finished(index) = (abs(df(index)) <= lambda);
finished(~index) = (abs(df(~index) + lambda * sign(w(~index))) < eps);
if finished
break;
end
end
end
%% Soft thresholding
function x = soft(x, lambda)
x = sign(x) * max(0, abs(x) - lambda);
end
结果

注意:罚参数lamda的设定对逆协方差的稀疏性的影响很大,可以用交叉验证方式得到。
4.2 方法二
graphicalLasso.m
function [Theta, W] = graphicalLasso(S, rho, maxIt, tol)
% http://www.ece.ubc.ca/~xiaohuic/code/glasso/glasso.htm
% Solve the graphical Lasso
% minimize_{Theta > 0} tr(S*Theta) - logdet(Theta) + rho * ||Theta||_1
% Ref: Friedman et al. (2007) Sparse inverse covariance estimation with the
% graphical lasso. Biostatistics.
% Note: This function needs to call an algorithm that solves the Lasso
% problem. Here, we choose to use to the function *lassoShooting* (shooting
% algorithm) for this purpose. However, any Lasso algorithm in the
% penelized form will work.
%
% Input:
% S -- sample covariance matrix
% rho -- regularization parameter
% maxIt -- maximum number of iterations
% tol -- convergence tolerance level
%
% Output:
% Theta -- inverse covariance matrix estimate
% W -- regularized covariance matrix estimate, W = Theta^-1 p = size(S,1); if nargin < 4, tol = 1e-6; end
if nargin < 3, maxIt = 1e2; end % Initialization
W = S + rho * eye(p); % diagonal of W remains unchanged
W_old = W;
i = 0; % Graphical Lasso loop
while i < maxIt,
i = i+1;
for j = p:-1:1,
jminus = setdiff(1:p,j);
[V D] = eig(W(jminus,jminus));
d = diag(D);
X = V * diag(sqrt(d)) * V'; % W_11^(1/2)
Y = V * diag(1./sqrt(d)) * V' * S(jminus,j); % W_11^(-1/2) * s_12
b = lassoShooting(X, Y, rho, maxIt, tol);
W(jminus,j) = W(jminus,jminus) * b;
W(j,jminus) = W(jminus,j)';
end
% Stop criterion
if norm(W-W_old,1) < tol,
break;
end
W_old = W;
end
if i == maxIt,
fprintf('%s\n', 'Maximum number of iteration reached, glasso may not converge.');
end Theta = W^-1; % Shooting algorithm for Lasso (unstandardized version)
function b = lassoShooting(X, Y, lambda, maxIt, tol), if nargin < 4, tol = 1e-6; end
if nargin < 3, maxIt = 1e2; end % Initialization
[n,p] = size(X);
if p > n,
b = zeros(p,1); % From the null model, if p > n
else
b = X \ Y; % From the OLS estimate, if p <= n
end
b_old = b;
i = 0; % Precompute X'X and X'Y
XTX = X'*X;
XTY = X'*Y; % Shooting loop
while i < maxIt,
i = i+1;
for j = 1:p,
jminus = setdiff(1:p,j);
S0 = XTX(j,jminus)*b(jminus) - XTY(j); % S0 = X(:,j)'*(X(:,jminus)*b(jminus)-Y)
if S0 > lambda,
b(j) = (lambda-S0) / norm(X(:,j),2)^2;
elseif S0 < -lambda,
b(j) = -(lambda+S0) / norm(X(:,j),2)^2;
else
b(j) = 0;
end
end
delta = norm(b-b_old,1); % Norm change during successive iterations
if delta < tol, break; end
b_old = b;
end
if i == maxIt,
fprintf('%s\n', 'Maximum number of iteration reached, shooting may not converge.');
end
结果
>> A=[5.9436 0.0676 0.5844 -0.0143
0.0676 0.5347 -0.0797 -0.0115
0.5844 -0.0797 6.3648 -0.1302
-0.0143 -0.0115 -0.1302 0.2389
];
>> [Theta, W] = graphicalLasso(A, 1e-4) Theta = 0.1701 -0.0238 -0.0159 0.0003
-0.0238 1.8792 0.0278 0.1034
-0.0159 0.0278 0.1607 0.0879
0.0003 0.1034 0.0879 4.2369 W = 5.9437 0.0675 0.5843 -0.0142
0.0675 0.5348 -0.0796 -0.0114
0.5843 -0.0796 6.3649 -0.1301
-0.0142 -0.0114 -0.1301 0.2390
5. 补充:近端梯度下降(Proximal Gradient Descent, PGD)求解Lasso问题


6. 参考文献
[1] 林祝莹. 图Lasso及相关方法的研究与应用[D].燕山大学,2016.
[2] Graphical Lasso for sparse inverse covariance selection
[3] 周志华. 机器学习[M]. 清华大学出版社, 2016.
[4] Graphical lasso in R and Matlab
[5] Graphical Lasso
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)的更多相关文章
- ZOJ3574(归并排序求逆数对)
Under Attack II Time Limit: 5 Seconds Memory Limit: 65536 KB Because of the sucessfully calcula ...
- Day2:T4求逆序对(树状数组+归并排序)
T4: 求逆序对 A[I]为前缀和 推导 (A[J]-A[I])/(J-I)>=M A[j]-A[I]>=M(J-I) A[J]-M*J>=A[I]-M*I 设B[]=A[]-M*( ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- 【bzoj3456】城市规划(多项式求逆+dp)
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...
- POJ 2299树状数组求逆序对
求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...
- [bzoj3456] 城市规划 [递推+多项式求逆]
题面 bzoj权限题面 离线题面 思路 orz Miskcoo ! 先考虑怎么算这个图的数量 设$f(i)$表示$i$个点的联通有标号无向图个数,$g(i)$表示$n$个点的有标号无向图个数(可以不连 ...
- SGU180 Inversions(树状数组求逆序数)
题目: 思路:先离散化数据然后树状数组搞一下求逆序数. 离散化的方法:https://blog.csdn.net/gokou_ruri/article/details/7723378 自己对用树状数组 ...
- <Sicily>Inversion Number(线段树求逆序数)
一.题目描述 There is a permutation P with n integers from 1 to n. You have to calculate its inversion num ...
- JDOJ 1927 求逆序对
洛谷 P1908 逆序对 洛谷传送门 JDOJ 1927: 求逆序对 JDOJ传送门 题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现 ...
随机推荐
- jmeter控制器(三)
While Controllert当控制器: 当满足条件的情况下,就会执行控制器里面的脚本,首先我们设置线程组循环次数为10,如下图: 其次在配置元件中添加一个计数器,并设置从0到最大的10,每次递增 ...
- Windows 7下Node.js Web开发环境搭建笔记
Node.js是什么? 我们看看百科里怎么说的?JavaScript是一种运行在浏览器的脚本,它简单,轻巧,易于编辑,这种脚本通常用于浏览器的前端编程,但是一位开发者Ryan有一天发现这种前端式的脚本 ...
- 009.MongoDB分片群集部署
一 前期准备 1.1 组件说明 MongoDB分片群集包含以下组件: shard:每个分片是分片数据的子集.从MongoDB 3.6开始,必须将分片部署为副本集. mongos:mongos充当查询路 ...
- promise 和 setTimeout 在任务队列的执行顺序
setTimeout(() => { console.log() }); const a = new Promise((resolve,reject)=>{ console.log(); ...
- (day65)作业
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 解决Fiddler在win7系统下的安全证书问题
如果电脑win7系统,一直解决不了Fiddler的证书安装问题,可以试试下面的办法. 在安装证书的时候一直遇到这个问题. 这是因为win7系统的在.net Framework4.0上面的bug引起的. ...
- SSM框架(Spring + Spring MVC + Mybatis)搭建
Spring是一个轻量级的框架,用到了注解和自动装配,就是IOC和AOP: SpringMVC是Spring实现的一个Web层,相当于Struts的框架: Mybatis是 一个持久层的框架,在使用上 ...
- 推荐书单(网课)-人生/编程/Python/机器学习-130本
目录 总计(130本) 一.在读 二.将读 三.已读 非专业书单(77本) 四.已读 专业书单(53本) 五.已看网课(8个) 六.在看网课 一个人如果抱着义务的意识去读书,便不了解读书的艺术.--林 ...
- java之运算符的优先级
优先级 运算符 结合性 1 () [] 从左往右 2 ! +(正) -(负) ++ -- 从右往左 3 * / % 从左往右 4 << >> >>> 从左往 ...
- React: React的属性验证机制
一.简介 在开发中,属性变量类型的验证,几乎是任何语言都必须关注的问题,因为如果传入的数据类型不对,轻者程序运行仅仅是给出警告⚠️,严重的会直接导致程序中断,APP闪退或者web页面挂掉,这是很严重的 ...