★实验任务

小 F 很爱打怪,今天因为系统 bug,他提前得知了 n 只怪的出现顺序以及击 倒每只怪得到的成就值 ai。设第一只怪出现的时间为第 1 秒,这个游戏每过 1 秒 钟出现一只新怪且没被击倒的旧怪消失。小 F 决定发动一次技能,他的技能最多 维持 k 秒,他希望获得最大的成就值,请你帮他计算他发动技能的时间 l 和技能 结束时间 r(r-l+1<=k)。当存在多种方案使得成就值最大时,选择技能发动时间 l 最小的方案,再选择技能持续时间 r-l+1 最小的方案。

★数据输入

输入第一行为两个正整数 n(1<=n<=100000),k(0<k<=n),表示出现 n 只怪, 小 F 的技能最多维持 k 秒。 输入第二行为 n 个整数,表示小 F 击倒第 i 秒钟出现的怪能给有获得的成就 值 ai(-1000<=a[i]<=1000)。

★数据输出

输出为一行三个数。第一个数为可获得的最大成就值,第二个数为技能发动 时间 l,第三个数为技能结束时间 r。

测试样例

输入:

6 3

-1 2 6 5 -5 6

输出:

6 4 6

单调队列的自我理解(这个例子是从某个大神的博客中看到的):

例题:有一组数据1,5,9,4,7,8,6,他们会依此输入,同时,在某一时刻会让你求出后n个数中的最大值。

根据题意,我们可以得出这样一个结论,若后一个数大于前一个数,则结果必定不会是前一个数(比如现在输入了1,5,由于1<5,所以无论是后几个数中的最大值均不会为1),因此,我们只需维护一个单调递减的数组便可快速求得所需值。(数组变化如下:输入——1,数组——1;输入——5,由于5>1删去1添入5,数组——5;输入——9,由于9>5删去5添入9,数组——9;输入——4,由于4<9直接添入,数组——9,4;输入——7,由于7>4同时7<9因此删去4添入7,数组——9,7;输入——8,由于8>4同时8<9因此删去7添入8,数组——9,8;输入——6,由于6<8直接添入,数组——9,8,6。)总的来说,它的本质就是当你在插入一个值时,应将在他之前存入的所有小于他的数值剔除,再将他存入数组中。

xfdg题解题思路:显然暴力是行不通的,对于此类子序列求和以及存储下标的问题通常是可以用单调队列写的,用一个sum数组储存数列的前缀和,然后通过一个que数组根据题目意思存储数组下标。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define MAX 100005
#define INF 100000000 using namespace std; int sum[MAX] = { 0 };
int que[MAX]; int main()
{
int n, k, i, j;
cin >> n >> k;
for (i = 1; i <= n; i++)
{
int tmp;
cin >> tmp;
sum[i] = sum[i - 1] + tmp;
}
int front = 0, tail = 0, ans = -INF;
int ansr, ansl;
for (i = 1; i <= n; i++)
{
while (tail > front&&sum[i - 1] < sum[que[tail - 1]])
tail--;
que[tail++] = i - 1;
while (tail > front&&i - que[front] > k)
front++;
if (ans < sum[i] - sum[que[front]])
{
ans = sum[i] - sum[que[front]];
ansl = que[front] + 1; ansr = i;
}
}
printf("%d %d %d\n",ans, ansl, ansr);
return 0;
}

还会写几道有关单调队列的题目,比如求数列中长度内的最大值最小值问题,然后给出链接,多个例题一起看会稍微更好理解一些,到时候再把链接贴上;

更新补充(POJ2823单调队列):博客链接

单调队列(数列中长度不超过k的子序列和的最值)的更多相关文章

  1. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  2. HDU 3415 Max Sum of Max-K-sub-sequence【单调队列】

    <题目链接> 题目大意: 给你一段从1~N的圆形序列,要你求出这段圆形序列中长度不超过K的最大连续子序列之和是多少,并且输出这子序列的起点和终点. 解题分析: 既然是求连续子序列之和,我们 ...

  3. 图中长度为k的路径的计数

    题意 给出一个有向图,其中每条边的边长都为1.求这个图中长度恰为 $k$ 的路劲的总数.($1 \leq n \leq 100, 1 \leq k\leq 10^9$) 分析 首先,$k=1$ 时答案 ...

  4. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  5. 单调队列 && 斜率优化dp 专题

    首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...

  6. 单调栈&单调队列入门

    单调队列是什么呢?可以直接从问题开始来展开. Poj 2823 给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数. 数列长度:\(N <=10^6 ,m<=N\) 解法① ...

  7. 单调队列&单调栈

    单调队列 例题: Poj 2823给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数.数列长度:N<=106,m<=N 对于单调队列,我们这样子来定义: 1.维护区间最值 2 ...

  8. hdu 3415 单调队列

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. 单调队列优化DP(超详细!!!)

    一.概念 1.单调队列定义: 其实单调队列就是一种队列内的元素有单调性(单调递增或者单调递减)的队列,答案(也就是最优解)就存在队首,而队尾则是最后进队的元素.因为其单调性所以经常会被用来维护区间最值 ...

随机推荐

  1. Windows全版本KMS激活脚本

    搭建了个KMS服务器,制作了个批处理激活脚本,所有代码可以看到,让你再也不用担心系统会被有些激活工具强改主页,留有后门的风险了. 本脚本可以激活Windows全版本,安全.绿色. 1.首先你的系统必须 ...

  2. 批量生成文件夹内所有文件md5

    说明:md5批量生成批处理脚本,无需安装任何软件,直接调用系统文件进行生成,简单基于windows命令编写了一个批量生成md5值的脚本. 使用说明:新建文本文档,命名为get_md5.bat,直接将代 ...

  3. lua协程实现

    协程是个很好的东西,它能做的事情与线程相似,区别在于:协程是使用者可控的,有API给使用者来暂停和继续执行,而线程由操作系统内核控制:另外,协程也更加轻量级.这样,在遇到某些可能阻塞的操作时,可以使用 ...

  4. springboot快速入门(一)——HelloWorld搭建

    一.起步 1.先导 凡技术必登其官网的原则,官网走一波:https://projects.spring.io/spring-boot/#quick-start 极力推荐一个springboot教程:h ...

  5. [SCOI2010]传送带 三分法

    [SCOI2010]传送带 LG传送门 三分法模板. 关于为什么可以三分,我选择感性理解,有人证明了,总之我是懒得证了. 假设路径是\(A \to E \to F \to D\),\(E\)和\(F\ ...

  6. [BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]

    题意 给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变 \(n\leq 3\times 10^4\ ,m\leq 10^5\) . ...

  7. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  8. 开始认真的学习Python

    虽然以前有多年的Fortran.C.C++以及Java开发经验,但真的开始熟悉Python还是被惊艳到了,太舒服了,看起来有如沐春风的感觉,简洁和优美,这个才是代码艺术.

  9. 深入理解C/C++二维数组

    深入理解C/C++二维数组 前言 本来以为自己对二维数组的理解还可以,没感觉有什么,但是今天小伙伴问了一个问题感觉迷惑了好久,于是决定细致的记录一下,一步一步的探究各种关于二维数组的问题,巩固基础. ...

  10. git解决代码提交冲突

    树冲突文件名修改造成的冲突,称为树冲突.比如,A同事把文件改名为A.C,B同事把同一个文件改名为B.C,那么B同事将这两个commit合并时,会产生冲突.如果最终确定用B同事的文件名,那么解决办法如下 ...