论文题例8

https://blog.csdn.net/queuelovestack/article/details/53031731这个解释很好

其实,当枚举的重复子串长度为i时,我们在枚举r[i*j]和r[i*(j+1)]的过程中,必然可以出现r[i*j]在第一个重复子串里,而r[i*(j+1)]在第二个重复子串里的这种情况,如果此时r[i*j]是第一个重复子串的首字符,这样直接用公共前缀k除以i并向下取整就可以得到最后结果。但如果r[i*j]如果不是首字符,这样算完之后结果就有可能偏小,因为r[i*j]前面可能还有少许字符也能看作是第一个重复子串里的。
于是,我们不妨先算一下,从r[i*j]开始,除匹配了k/i个重复子串,还剩余了几个字符,剩余的自然是k%i个字符。如果说r[i*j]的前面还有i-k%i个字符完成匹配的话,这样就相当于利用多余的字符还可以再匹配出一个重复子串,于是我们只要检查一下从r[i*j-(i-k%i)] (前缀首字符位置)和r[i*(j+1)-(i-k%i)]开始是否有i-k%i个字符能够完成匹配即可,也就是说去检查这两个后缀的最长公共前缀是否比i-k%i大即可。
当然如果公共前缀不比i-k%i小,自然就不比i小,因为后面的字符都是已经匹配上的,所以为了方便编写,程序里面就直接去看是否会比i小就可以了。

用了rmq区间最小来求 位置i*j的前缀 和 i*j+1位置的前缀的最长公共前缀

//为什么这样能求出重复次数最多的连续重复子串  请先搞懂next循环节求连续重复子串 这题就懂了https://www.cnblogs.com/WTSRUVF/p/9461066.html

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int s[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn], n;
int ran[maxn], height[maxn];
int d[][]; void get_sa(int m)
{
int i, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= )
{
int p = ;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i< m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i-]] == y[sa[i]] && y[sa[i-]+k] == y[sa[i]+k] ? p- : p++;
if(p >= n) break;
m = p;
}
int k = ;
for(i = ; i < n; i++) ran[sa[i]] = i;
for(i = ; i < n; i++)
{
if(k) k--;
int j = sa[ran[i]-];
while(s[i+k] == s[j+k]) k++;
height[ran[i]] = k;
}
} void rmq_init()
{
for(int i=; i<n; i++) d[i][] = height[i];
for(int j=; (<<j) <= n; j++)
for(int i=; i+(<<j)- < n; i++)
d[i][j] = min(d[i][j-], d[i+(<<(j-))][j-]);
} int rmq(int l, int r)
{
int k = ;
while((<<(k+)) <= r-l+) k++;
return min(d[l][k], d[r-(<<k)+][k]);
} int qp(int l, int r)
{
l = ran[l], r = ran[r];
if(l > r) swap(l, r);
return rmq(l+, r); //因为height里是等级i和i-1的最长公共前缀 所以是l+1 不然就越界了
} int T;
char str[];
int main()
{
rd(T);
while(T--)
{
n = ;
int q;
rd(q);
rep(i, , q)
{
rs(str);
s[n++] = str[] - 'a' + ;
}
s[n++] = ;
get_sa();
rmq_init();
int maxx = -INF, ans;
for(int i=; i<=n; i++)
{
for(int j=; j+i<n; j+=i)
{
ans = qp(j, j+i);
int k = j - (i - ans%i);
ans = ans/i + ; //因为j+i的后缀突出来一段长为i的串 所以+1
if(k>= && qp(k, k+i) >= i)
ans++;
maxx = max(maxx, ans);
}
}
cout<< maxx <<endl;
} return ;
}

Repeats SPOJ - REPEATS(重复次数最多的连续重复子串)的更多相关文章

  1. SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags  A string s is called an (k,l ...

  2. POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串

    题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS   Memory Li ...

  3. spoj687 后缀数组重复次数最多的连续重复子串

    REPEATS - Repeats no tags  A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...

  4. 【POJ 3693】Maximum repetition substring 重复次数最多的连续重复子串

    后缀数组的论文里的例题,论文里的题解并没有看懂,,, 求一个重复次数最多的连续重复子串,又因为要找最靠前的,所以扫的时候记录最大的重复次数为$ans$,扫完后再后从头暴力扫到尾找重复次数为$ans$的 ...

  5. POJ-3693-Maximum repetition substring(后缀数组-重复次数最多的连续重复子串)

    题意: 给出一个串,求重复次数最多的连续重复子串 分析: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现几次. 既然长度为L的串重复出现,那么str[0],str[l],str ...

  6. poj 3693 后缀数组 重复次数最多的连续重复子串

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8669   Acc ...

  7. POJ - 3693 Maximum repetition substring(重复次数最多的连续重复子串)

    传送门:POJ - 3693   题意:给你一个字符串,求重复次数最多的连续重复子串,如果有一样的,取字典序小的字符串. 题解: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现 ...

  8. Maximum repetition substring POJ - 3693(重复次数最多的连续重复子串)

    这题和SPOJ - REPEATS 一样  代码改一下就好了 这个题是求这个重复子串,还得保证字典序最小 巧妙运用sa 看这个 https://blog.csdn.net/queuelovestack ...

  9. 687. Repeats spoj (后缀数组 重复次数最多的连续重复子串)

    687. Repeats Problem code: REPEATS A string s is called an (k,l)-repeat if s is obtained by concaten ...

随机推荐

  1. 办公区公网Ip访问不到阿里云ECS

    办公区公网Ip访问不到阿里云ECS 工作中遇见这样的问题, Hadoop 部署在办公区内网, 而应用有些的数据在阿里云ECS主机中,现在hadoop 访问ECS 却访问不到ESC ,最终电话咨询阿里云 ...

  2. 使用Nmon_Analyzer excel 问题总结

    使用wps打开nmon的分析文件,出现  运行时错误13类型不匹配 查看具体代码,是这句出现错误Start = DateValue(Sheet1.Range("date")),进一 ...

  3. Jmeter接口测试(八)cookie设置

    HTTP Cookie 管理器 如果你有一个 HTTP 请求,其返回结果里包含一个 cookie,那么 使用 JmeterCookie 管理器会自动将该 cookie保存起来,而且以后所有对该网站的请 ...

  4. svn图文教程-宋正河整理

    下载地址:http://download.csdn.net/download/songzhengdong82/4433476 在线浏览:http://wenku.baidu.com/view/07f1 ...

  5. php js css加载合并函数 宋正河整理

    <?php //php js css加载合并函数 宋正河整理 //转载请注明出处 define('COMBINE_JS',true); define('COMBINE_CSS',true);   ...

  6. 角色和武器Shader特效开发

    角色Shader的动效需求 角Shader的开发不知要实现最基础光照等功能, 可能还要在角色武器的Shader增加多种动效, 比如因武器品质区分的流光特效, 被技能击中时的冻结效果. 这类动效的实现方 ...

  7. Linux命令对应的英文及整体学习法

    linux命令 注意一下内容收集与互联网,如果觉得有版权问题,请联系. 用Linux命令的时候,如果熟悉对应英文的含义,更有助于理解相应的命令.man: Manual 意思是手册,可以用这个命令查询其 ...

  8. GIT问题(一)——push冲突

  9. Markdown 版本演进

    本文作为 Markdown 系列的第二篇,对上一篇使用 Markdown 写技术博客,我踩过的 6个坑博客提到的版本变迁进行简要的提纲说明. 如果不想读文章,请直接看思维导图,使用 Atom + ma ...

  10. django-simple_tag、filter

    simple_tag与filter的用法 1.支持自定义函数处理方法 2.支持模板调用 创建步骤: a.在app目录下创建templatetags文件夹 b.在templatetags中创建任意名称. ...