本文编程环境:Jupyter NoteBook python3

类也是对象

在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在 Python 中这一点仍然成立:

class ObjectCreator(object):
pass my_object = ObjectCreator()
my_object
<__main__.ObjectCreator at 0x233e50a8ba8>

但是,Python 中的类还远不止如此。类同样也是一种对象。只要你使用关键字 class,Python 解释器在执行的时候就会创建一个对象。下面的代码段:

class ObjectCreator(object):
pass

将在内存中创建一个对象,名字就是 ObjectCreator。这个对象(类)自身拥有创建对象(类实例)的能力,而这就是为什么它是一个类的原因。但是,它的本质仍然是一个对象,于是乎你可以对它做如下的操作:

  1. 你可以将它赋值给一个变量
  2. 你可以拷贝它
  3. 你可以为它增加属性
  4. 你可以将它作为函数参数进行传递

你可以打印一个类,因为它其实也是一个对象

print(ObjectCreator)
<class '__main__.ObjectCreator'>

你可以将类做为参数传给函数

def echo(o):
print(o) echo(ObjectCreator)
<class '__main__.ObjectCreator'>

你可以为类增加属性

print(hasattr(ObjectCreator, 'new_attribute'))
False
ObjectCreator.new_attribute = 'foo'
print(hasattr(ObjectCreator, 'new_attribute'))
True
print(ObjectCreator.new_attribute)
foo

你可以将类赋值给一个变量

ObjectCreatorMirror = ObjectCreator 

print(ObjectCreatorMirror())
<__main__.ObjectCreator object at 0x00000233E51241D0>

动态地创建类

因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用 class 关键字即可。

def choose_class(name):
if name == 'foo':
class Foo(object):
pass
return Foo # 返回的是类,不是类的实例
else:
class Bar(object):
pass
return Bar MyClass = choose_class('foo')
print(MyClass)              # 函数返回的是类,不是类的实例
<class '__main__.choose_class.<locals>.Foo'>
print(MyClass())            # 你可以通过这个类创建类实例,也就是对象
<__main__.choose_class.<locals>.Foo object at 0x00000233E51242E8>

但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们必须是通过什么东西来生成的才对。当你使用 class 关键字时, Python 解释器自动创建这个对象。但就和 Python 中的大多数事情一样,Python 仍然提供给你手动处理的方法。还记得内建函数 type 吗?这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:

type(1)
int
type("1")
str
type(ObjectCreator)
type
type(ObjectCreator())
__main__.ObjectCreator

type 动态的创建类

这里,type 有一种完全不同的能力,它也能动态的创建类。type 可以接受一个类的描述作为参数,然后返回一个类。(我们知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很傻的事情,但这在 Python 中是为了保持向后兼容性)。

type 可以像这样工作:

type(类名, 父类的元组 (针对继承的情况,可以为空),包含属性的字典(名称和值))

比如下面的代码:

class MyShinyClass(object):
pass

可以手动像这样创建:

MyShinyClass = type('MyShinyClass', (), {})  # 返回一个类对象
MyShinyClass
__main__.MyShinyClass
MyShinyClass()  #  创建一个该类的实例
<__main__.MyShinyClass at 0x233e51240f0>

你会发现我们使用 "MyShinyClass" 作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。

type 接受一个字典来为类定义属性,因此

class Foo(object):
bar = True

可以翻译为:

Foo = type('Foo', (), {'bar':True})

并且可以将 Foo 当成一个普通的类一样使用:

Foo
__main__.Foo
Foo.bar
True
f = Foo()
f
<__main__.Foo at 0x233e5124be0>
f.bar
True

当然,你可以向这个类继承,所以,如下的代码:

class FooChild(Foo):
pass

就可以写成:

FooChild = type('FooChild', (Foo,),{})
print(FooChild)
print(FooChild.bar) # bar属性是由 Foo 继承而来
<class '__main__.FooChild'>
True

最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了。

def echo_bar(self):
print(self.bar)
FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
hasattr(Foo, 'echo_bar')
False
hasattr(FooChild, 'echo_bar')
True
my_foo = FooChild()
my_foo.echo_bar()
True

你可以看到,在 Python 中,类也是对象,你可以动态的创建类。这就是当你使用关键字 class 时 Python 在幕后做的事情,而这就是通过元类来实现的。

Test = type('Test',(),{})
print(Test)
help(Test)
<class '__main__.Test'>
Help on class Test in module __main__: class Test(builtins.object)
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
Dog = type('Dog',(),{'name':'二哈','age':1})
print(Dog)
help(Dog)
<class '__main__.Dog'>
Help on class Dog in module __main__: class Dog(builtins.object)
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| age = 1
|
| name = '二哈'
Dog = type('Dog',(),{'name':'二哈','age':1})
print(Dog)
help(Dog) DogChild = type('DogChild', (Dog,),{})
print(DogChild)
print(DogChild.name)
<class '__main__.Dog'>
Help on class Dog in module __main__: class Dog(builtins.object)
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| age = 1
|
| name = '二哈' <class '__main__.DogChild'>
二哈
help(DogChild)
Help on class DogChild in module __main__:

class DogChild(Dog)
| Method resolution order:
| DogChild
| Dog
| builtins.object
|
| Data descriptors inherited from Dog:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from Dog:
|
| age = 1
|
| name = '二哈'

使用 type 创建带有方法的类

#普通方法
def test(self):
print("test") #静态方法
@staticmethod
def static_test():
print("static_test") #类方法
@classmethod
def class_test(cls):
print("class_test") Test = type('Test',(),{'name':'name','test':test,'static_test':static_test,'class_test':class_test})
print(Test) test = Test()
test.test()
test.static_test()
test.class_test()
<class '__main__.Test'>
test
static_test
class_test

元类

元类就是用来创建类的「东西」。你创建类就是为了创建类的实例对象,不是吗?但是我们已经学习到了 Python 中的类也是对象。好吧,元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解为:

MyClass = MetaClass()
MyObject = MyClass()

你已经看到了 type 可以让你像这样做:

MyClass = type('MyClass', (), {})

这是因为函数 type 实际上是一个元类。type 就是 Python 在背后用来创建所有类的元类。现在你想知道那为什么 type 会全部采用小写形式而不是Type 呢?好吧,我猜这是为了和 str 保持一致性,str 是用来创建字符串对象的类,而 int 是用来创建整数对象的类。type 就是创建类对象的类。你可以通过检查 __class__ 属性来看到这一点。Python 中所有的东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来。

a = b'a2'
a.__class__
bytes
age = 35
age.__class__
int
name = 'bob'
name.__class__
str
def foo(): pass

foo.__class__
function
class Bar(object): pass

b = Bar()
b.__class__
__main__.Bar
Bar.__class__
type

现在,对于任何一个 __class____class__ 属性又是什么呢?

a.__class__.__class__
type
age.__class__.__class__
type
foo.__class__.__class__
type
b.__class__.__class__
type

因此,元类就是创建类这种对象的东西。如果你喜欢的话,可以把元类称为「类工厂」。 type 就是 Python 的内建元类,当然了,你也可以创建自己的元类。

在 python2 中可以通过定义一个类级别属性 __metaclass__ 来实创建元类,不过在 python3 中取消了 __metaclass__ 属性。python3 中可以通过在定义类的时候声明 metaclass 参数来创建元类。

class UpperAttrMetaClass(type):
# __new__ 是在 __init__ 之前被调用的特殊方法
# __new__ 是用来创建对象并返回之的方法
# 而 __init__ 只是用来将传入的参数初始化给对象
# 你很少用到 __new__,除非你希望能够控制对象的创建
# 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写 __new__
# 如果你希望的话,你也可以在 __init__ 中做些事情
# 还有一些高级的用法会涉及到改写 __call__ 特殊方法,但是我们这里不用
def __new__(cls, future_class_name, future_class_parents, future_class_attr):
#遍历属性字典,把不是 __ 开头的属性名字变为大写
newAttr = {}
for name,value in future_class_attr.items():
if not name.startswith("__"):
newAttr[name.upper()] = value # 方法1:通过 'type' 来做类对象的创建
# return type(future_class_name, future_class_parents, newAttr) # 方法2:复用 type.__new__ 方法
# 这就是基本的 OOP 编程,没什么魔法
# return type.__new__(cls, future_class_name, future_class_parents, newAttr) # 方法3:使用 super 方法
return super(UpperAttrMetaClass, cls).__new__(cls, future_class_name, future_class_parents, newAttr) #python2的用法
#class Foo(object):
# __metaclass__ = UpperAttrMetaClass
# bar = 'bip' # python3的用法
class Foo(object, metaclass = UpperAttrMetaClass):
bar = 'bip' print(hasattr(Foo, 'bar'))
# 输出: False
print(hasattr(Foo, 'BAR'))
# 输出:True f = Foo()
print(f.BAR)
# 输出:'bip'

就是这样,除此之外,关于元类真的没有别的可说的了。使用到元类的代码比较复杂,这背后的原因倒并不是因为元类本身,而是因为你通常会使用元类去做一些晦涩的事情,依赖于自省,控制继承等等。确实,用元类来搞些“黑暗魔法”是特别有用的,因而会搞出些复杂的东西来。但就元类本身而言,它们其实是很简单的:

  1. 拦截类的创建
  2. 修改类
  3. 返回修改之后的类

为什么要用 metaclass 类而不是函数?

由于 metaclass 可以接受任何可调用的对象,那为何还要使用类呢,因为很显然使用类会更加复杂啊?这里有好几个原因:

  1. 意图会更加清晰。当你读到 UpperAttrMetaclass(type) 时,你知道接下来要发生什么。
  2. 你可以使用 OOP 编程。元类可以从元类中继承而来,改写父类的方法。元类甚至还可以使用元类。
  3. 你可以把代码组织的更好。当你使用元类的时候肯定不会是像我上面举的这种简单场景,通常都是针对比较复杂的问题。将多个方法归总到一个类中会很有帮助,也会使得代码更容易阅读。
  4. 你可以使用 __new__, __init__ 以及 __call__ 这样的特殊方法。它们能帮你处理不同的任务。就算通常你可以把所有的东西都在 __new__ 里处理掉,有些人还是觉得用 __init__ 更舒服些。
  5. 哇哦,这东西的名字是 metaclass,肯定非善类,我要小心!

究竟为什么要使用元类?

现在回到我们的大主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它:

  • 『元类就是深度的魔法,\(99\%\) 的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类。』 —— Python 界的领袖 Tim Peters
  • 元类的主要用途是创建 API。一个典型的例子是 Django ORM。它允许你像这样定义:
class Person(models.Model):
name = models.CharField(max_length=30)
age = models.IntegerField()

但是如果你像这样做的话:

guy  = Person(name='bob', age='35')
print(guy.age)

这并不会返回一个 IntegerField 对象,而是会返回一个 int,甚至可以直接从数据库中取出数据。这是有可能的,因为 models.Model 定义了metaclass, 并且使用了一些魔法能够将你刚刚定义的简单的 Person 类转变成对数据库的一个复杂 hook。Django 框架将这些看起来很复杂的东西通过暴露出一个简单的使用元类的 API 将其化简,通过这个 API 重新创建代码,在背后完成真正的工作。

结语

首先,你知道了类其实是能够创建出类实例的对象。好吧,事实上,类本身也是实例,当然,它们是元类的实例。

class Foo(object): pass
id(Foo)
2421904320648

Python 中的一切都是对象,它们要么是类的实例,要么是元类的实例,除了 typetype 实际上是它自己的元类,在纯 Python 环境中这可不是你能够做到的,这是通过在实现层面耍一些小手段做到的。其次,元类是很复杂的。对于非常简单的类,你可能不希望通过使用元类来对类做修改。你可以通过其他两种技术来修改类:

  • Monkey patching
  • class decorators

当你需要动态修改类时,\(99\%\) 的时间里你最好使用上面这两种技术。当然了,其实在 \(99\%\) 的时间里你根本就不需要动态修改类。

更多内容可参考:9.15 定义有可选参数的元类

附加实例

实例1:增加一个 __author__ 类属性

class Author(type):
def __new__(cls, name, bases, attrs):
attrs['__author__'] = 'xiemanR'
return type.__new__(cls, name, bases, attrs) class MyBlog(metaclass=Author):
pass print(MyBlog.__author__) a = MyBlog()
print(a.__author__)
xiemanR
xiemanR
class Singleton(type):
def __new__(cls, name, bases, attrs):
print('new')
attrs['instance'] = None
return super(Singleton, cls).__new__(cls, name, bases, attrs) def __call__(cls, *args, **kwargs):
print('call')
if cls.instance is None:
cls.instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls.instance class Foo(metaclass=Singleton):
pass x = Foo()
y = Foo()
print(id(x))
print(id(y))
new
call
call
2421910133840
2421910133840
class Upper(type):
def __new__(cls, name, bases, dct):
attrs = ((name, value) for name, value in dct.items() if not name.startswith('__'))
uppercase_attr = dict((name.upper(), value) for name, value in attrs)
return type.__new__(cls, name, bases, uppercase_attr) class Bar(metaclass=Upper):
foo = 'foo'
test = 'test' b = Bar()
print(b.FOO)
print(b.TEST)
foo
test

理解 Python 中的元类的更多相关文章

  1. [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式

    使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...

  2. 深刻理解Python中的元类metaclass(转)

    本文由 伯乐在线 - bigship 翻译 英文出处:stackoverflow 译文:http://blog.jobbole.com/21351/ 译注:这是一篇在Stack overflow上很热 ...

  3. 深刻理解Python中的元类(metaclass)

    译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉得 ...

  4. [转] 深刻理解Python中的元类(metaclass)

    非常详细的一篇深入讲解Python中metaclass的文章,感谢伯乐在线-bigship翻译及作者,转载收藏. 本文由 伯乐在线 - bigship 翻译.未经许可,禁止转载!英文出处:stacko ...

  5. 深刻理解Python中的元类(metaclass)【转】

    译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉得 ...

  6. 深刻理解Python中的元类(metaclass)以及元类实现单例模式

    在理解元类之前,你需要先掌握Python中的类.Python中类的概念借鉴于Smalltalk,这显得有些奇特.在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段.在Python中这一点仍 ...

  7. 深入理解Python中的元类(metaclass)

    原文 译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍 ...

  8. 深度理解python中的元类

    本文转自:(英文版)https://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python   (翻译版)   http:// ...

  9. python——深刻理解Python中的元类(metaclass)

    译注:这是一篇在Stack overflow上 很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉 ...

随机推荐

  1. Mockserver -MOCO的使用

    转自: http://blog.csdn.net/shensky711/article/details/52770686

  2. Java并发编程原理与实战四十二:锁与volatile的内存语义

    锁与volatile的内存语义 1.锁的内存语义 2.volatile内存语义 3.synchronized内存语义 4.Lock与synchronized的区别 5.ReentrantLock源码实 ...

  3. asp.net后台操作javascript:confirm返回值

    在asp.net中使用confirm可以分为两种: 1.没有使用ajax,confirm会引起也面刷新 2.使用了ajax,不会刷新 A.没有使用ajax,可以用StringBuilder来完成. ( ...

  4. [hadoop]hadoop api 新版本与旧版本的差别

    突然现在对以后的职业方向有些迷茫,不知道去干什么,现在有一些语言基础,相对而言好的一些有Java和C,选来选去不知道该选择哪个方向,爬了好多网页后,觉得自己应该从java开始出发,之前有点心不在焉,不 ...

  5. 【Linux】VMware及VirtualBox网络配置

    在VMware或VirtualBox中,安装完linux系统,不能连到win7 具体配置,如下. 如上.

  6. 在Emacs中画思维导图

    是的,你没有看错.其实,不只画思维导图,画结构图.流程图等,都可以.那怎么办呢?就是借助 Graphviz . Graphviz 可以方便地表达概念之间的联系,因此用它画思维导图是可行的,再加上它是个 ...

  7. 在windows的IDEA运行Presto

    After building Presto for the first time, you can load the project into your IDE and run the server. ...

  8. log4net记录系统错误日志到文本文件用法详解

    log4net是一个完全免费开源的插件,可以去官网下载源码. 一般系统操作日志不会用log4net,自己写代码存入数据库更方便合理,但是系统部署后运行在客户环境,难免会发生系统bug.崩溃.断网等无法 ...

  9. 【FCS NOI2018】福建省冬摸鱼笔记 day1

    省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...

  10. BigDecimal常用方法

    一.介绍 Java中提供了大数字(超过16位有效位)的操作类,即 java.math.BinInteger 类和 java.math.BigDecimal 类,用于高精度计算. 其中 BigInteg ...