题目链接:https://cn.vjudge.net/contest/277955#problem/B

题目大意:首先输入n代表有n个电脑,然后再输入n-1行,每一行输入两个数,t1,t2.代表第(i+1)个电脑连向电脑t1,花费是t2,然后问你每个电脑的到其他电脑的最大花费。

具体思路:按照图来想,对于节点2,最大的花费的路径可能有两种,第一种,往下遍历他的叶子节点找到最大的,第二种,先往上走,然后从往上走的节点再去找最大的花费。

对于第一种花费,我们直接dfs求就可以了。 但是在求的时候顺便求一下当前这个节点往下的第二大花费,具体作用是在第二种情况中会使用到。

对于第二种花费,我们先是往上移动,然后再去求他上面的点的最大花费,但是这个地方要注意一点,在往上面走的时候,求的最小花费可能会有路径重复,比如说三号节点,往上走的话是2号节点,而二号节点的最远距离有可能是2->3->4,这样的话,就会有一段路径重复计算。这个时候求的次小花费就能有用处了,既然我花费最大的用不了,那么我就用花费第二小的。

状态转移方程: 对于第二种情况,如果当前的节点的父亲节点的最大花费的路径中包括当前这个节点,这个时候我们就算上第二大的,然后再加上当前这个点到父亲节点的花费就可以了。否则就安最大花费计算。

AC代码:

 #include<iostream>
#include<cmath>
#include<stack>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
# define inf 0x3f3f3f3f
# define ll long long
const int maxn = 4e4+;
struct node
{
int nex;
int to;
int cost;
} edge[maxn];
int num,head[maxn],dp[maxn][],father[maxn];
void init()
{
num=;
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
}
void addedge(int fr,int to,int cost)
{
edge[num].to=to;
edge[num].nex=head[fr];
edge[num].cost=cost;
head[fr]=num++;
}
void dfs1(int st,int rt)
{
for(int i=head[st]; i!=-; i=edge[i].nex)
{
int to=edge[i].to;
if(to==rt)
continue;
dfs1(to,st);
if(dp[to][]+edge[i].cost>dp[st][])
{
father[st]=to;// 这个地方要注意是谁是数组的下标,我们需要判断的是这个父亲节点的路径上是不是包括这个子节点。
dp[st][]=dp[st][];//记录次大的
dp[st][]=dp[to][]+edge[i].cost;
}
else if(dp[to][]+edge[i].cost>dp[st][])
{
dp[st][]=dp[to][]+edge[i].cost;
}
}
}
void dfs2(int st,int rt)
{
for(int i=head[st]; i!=-; i=edge[i].nex)
{
int to=edge[i].to;
if(to==rt)
continue;
if(father[st]==to)
{
dp[to][]=max(dp[st][],dp[st][])+edge[i].cost;
}
else
dp[to][]=max(dp[st][],dp[st][])+edge[i].cost;
dfs2(to,st);
}
}
int main()
{
int n;
while(~scanf("%d",&n))
{
init();
int t1,t2;
for(int i=; i<=n; i++)
{
scanf("%d %d",&t1,&t2);
addedge(i,t1,t2);
addedge(t1,i,t2);
}
dfs1(,-);
dfs2(,-);
for(int i=; i<=n; i++)
{
printf("%d\n",max(dp[i][],dp[i][]));
}
}
return ;
}

树形dp(B - Computer HDU - 2196 )的更多相关文章

  1. Computer HDU - 2196

    Computer HDU - 2196 A school bought the first computer some time ago(so this computer's id is 1). Du ...

  2. 动态规划(树形DP):HDU 5834 Magic boy Bi Luo with his excited tree

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8UAAAJbCAIAAABCS6G8AAAgAElEQVR4nOy9fXQcxZ0uXH/hc8i5N+

  3. 【树形dp】Computer

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. 动态规划(树形DP):HDU 5886 Tower Defence

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2MAAAERCAIAAAB5Jui9AAAgAElEQVR4nOy9a6wsS3YmFL/cEkh4LP

  5. 基础树形DP小结

    HDU 4044 Geodefense http://blog.csdn.net/zmx354/article/details/25109897 树形DP暂且先告一段落了. HDU 3586 Info ...

  6. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  7. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  8. 树形DP题目集合

    [树形DP](https://cn.vjudge.net/contest/123963#overview) #include<cstdio> #include<string> ...

  9. HDU 2196.Computer 树形dp 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. validate效验规则

    ] } }, messages:{ name:{ required:"最少为2个字!" }, tel:{ required:"请填写手机号码!", isMobi ...

  2. javascript 进阶篇1 正则表达式,cookie管理,userData

    首先,什么事正则表达式呢,其实引入概念很多时候并不能帮我们明白它到底是什么,所以我先简单描述下,正则表达式,其实就是一个记录字符串规则则的字符串,等我们看完这一部分,也就能明白它到底是什么了. 基本语 ...

  3. HDU4722——Good Numbers——2013 ACM/ICPC Asia Regional Online —— Warmup2

    今天比赛做得一个数位dp. 首先声明这个题目在数位dp中间绝对是赤裸裸的水题.毫无技巧可言. 题目的意思是个你a和b,要求出在a和b中间有多少个数满足数位上各个数字的和为10的倍数. 显然定义一个二维 ...

  4. RF相关知识

    前言:下文中的总结都是来自于网络,有的来自与博客,有的来自于维基百科/百度百科,仅仅是为了方便查看.   ASK: ASK:幅移键控调制的简写,例如二进制的,把二进制符号0和1分别用不同的幅度来表示, ...

  5. iOS 简单获取当前地理坐标

    iOS 获取当前地理坐标        iOS获取当前地理坐标,很简单几句代码,但是如果刚开始不懂,做起来也会也会出现一些问题. 1.导入定位需要用到的库:CoreLocation.framwork ...

  6. BZOJ2339 HNOI2011卡农(动态规划+组合数学)

    考虑有序选择各子集,最后除以m!即可.设f[i]为选i个子集的合法方案数. 对f[i]考虑容斥,先只满足所有元素出现次数为偶数.确定前i-1个子集后第i个子集是确定的,那么方案数为A(2n-1,i-1 ...

  7. STL 算法中函数对象和谓词

    STL 算法中函数对象和谓词 函数对象和谓词定义 函数对象: 重载函数调用操作符的类,其对象常称为函数对象(function object),即它们是行为类似函数的对象.一个类对象,表现出一个函数的特 ...

  8. 【Cf #292 D】Drazil and Morning Exercise(树的直径,树上差分)

    有一个经典的问题存在于这个子问题里,就是求出每个点到其他点的最远距离. 这个问题和树的直径有很大的关系,因为事实上距离每个点最远的点一定是直径的两个端点.所以我们可以很容易地进行$3$遍$Dfs$就可 ...

  9. 【poj3016】 K-Monotonic

    http://poj.org/problem?id=3016 (题目链接) 题意 给出一个数列,将一个数${a_i}$更改为${b_i}$的代价为${|a_i-b_i|}$.求将数列改为不递减的最小代 ...

  10. .net 控件开发常见的特性总结

    http://blog.csdn.net/aofengdaxia/article/details/5924364 在.net开发中常常需要使用一些[]里面的特性描述,我发现对常用的几个知道大概的意思, ...