【题目】D. Power Tower

【题意】给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案。n,q<=10^5,m,ai<=10^9。

【算法】扩展欧拉定理

【题解】扩展欧拉定理的形式:

$$a^b\equiv a^{b\%\varphi(p)+\varphi(p)} \ \ mod \ \ p \ \ (b\geq \varphi(p))$$

特别注意当b<φ(p)且(a,p)≠1时不变

假如现在是三个累乘幂a^(b^c),那么根据扩展欧拉定理:

$$a^{b^c}\ \ mod \ \ p\equiv a^{b^c\%\varphi(p)+\varphi(p)} \ \ mod \ \ p$$

这样我们只需要计算:

$$b^c\ \ mod \ \ \varphi(p)$$

更多个累乘幂的时候只需要不断递归取φ,直至1为止(φ(1)=1)。可以证明至多log(p)次可以得到答案。

这样计算累乘幂的复杂度就是O(log p*log n),也即一次询问的极限复杂度。

这里过程中用到的欧拉函数至多log p个,直接暴力求解,预处理复杂度O(log p*√n),用map存储,实现中可以直接记忆化。

总复杂度O(q*log p*log n)。

#include<cstdio>
#include<map>
#define ll long long
bool isdigit(char c){return c>=''&&c<='';}
int read(){
int s=,t=;char c;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
using namespace std;
const int maxn=;
map<int,int>p;
int a[maxn],n,m,q;
int phi(int n){
if(p.count(n))return p[n];
int ans=n,m=n;
for(int i=;i*i<=n;i++)if(n!=&&n%i==){
ans=ans/i*(i-);
while(n%i==)n/=i;
}
if(n>)ans=ans/n*(n-);
p[m]=ans;
return ans;
}
int mod(ll x,int y){return x<y?x:x%y+y;}//focus on add,because 2e9*2>int
int power(int x,int k,int m){
int ans=;
while(k){
if(k&)ans=mod(1ll*ans*x,m);
x=mod(1ll*x*x,m);
k>>=;
}
return ans;
}
int calc(int l,int r,int m){
if(l==r||m==)return mod(a[l],m);
return power(a[l],calc(l+,r,phi(m)),m);
}
int main(){
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
q=read();
while(q--){
int l=read(),r=read();
printf("%d\n",calc(l,r,m)%m);
}
return ;
}

实现:

1.递归过程中直接返回ans+mod,这样下一层就自带+φ(m)了,最后输出答案记得%m就可以了。

2.快速幂过程中的取模改为 int mod(ll x,int y){return x<y?x:x%y+y;} ,这样到某一次数字超过y之后,后面每次都会强制超过y然后+y直至最后一次。

【BZOJ】4869 相逢是问候

#2142. 「SHOI2017」相逢是问候

因为至多log次,所以暴力计算维护线段树,n个数字,每个至多log p次修改,每次都要重新计算一次log p,快速幂log n。所以复杂度O(n log3n)。

预处理phi的递归序列,然后转化为非递归计算常数比较小。

代码见:zsnuo

有一种优化方法,因为快速幂至多1e8且都是以c为底,可以预处理c^(0~1e4),令t=c^(1e4),再预处理t^(0~1e4),这样对于一个数字查一下大表t再定位到小表c就行了。

这就是传说中的分段打表,具体见:ripped

【CodeForces】906 D. Power Tower 扩展欧拉定理的更多相关文章

  1. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  2. [CodeForces - 906D] Power Tower——扩展欧拉定理

    题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...

  3. Codeforces 906 D. Power Tower

    http://codeforces.com/contest/906/problem/D 欧拉降幂 #include<cstdio> #include<iostream> usi ...

  4. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  5. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  6. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  7. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  8. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  9. [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】

    题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...

随机推荐

  1. Beta阶段——第二篇 Scrum 冲刺博客

    i. 提供当天站立式会议照片一张: ii. 每个人的工作 (有work item 的ID) (1) 昨天已完成的工作: 账单收支分明,剩余舍费关联成功 (2) 今天计划完成的工作: 账单删除功能,排序 ...

  2. 正确的姿势解决IE弹出证书错误页面

    在遇到IE证书问题时,正确的解法是安装证书到受信任的储存区 1.继续浏览此网站 2.进入页面后,点击地址栏的证书错误,查看证书 3.安装,设置安装到受信任的颁发机构 4.OK  

  3. [转帖]脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?

    脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?     http://www.52im.net/thread-1732-1-1.html   1.引言 本文接上篇<脑残式网 ...

  4. NULL,"",String.Empty三者在C#中的区别

    (1)NULLnull 关键字是表示不引用任何对象的空引用的文字值.null 是引用类型变量的默认值.那么也只有引用型的变量可以为NULL,如果int i=null,的话,是不可以的,因为Int是值类 ...

  5. java 数据结构与算法---二叉树

    原理来自百度百科     推荐数据演示网址 :https://www.cs.usfca.edu/~galles/visualization/BST.html 一.什么是二叉树 二叉树的每个结点至多只有 ...

  6. ajax极简教程

    一.什么是ajax ajax即异步JavaScript和XML,它是一种用于创建快速动态网页的技术.作用是通过在后台与服务器进行少量数据交换,使网页实现异步更新.这意味着可以在不重新加载整个网页的情况 ...

  7. 熟悉常用Linux操作

    cd命令:切换目录 (1)切换到目录 /usr/local cd /usr/local (2)去到目前的上层目录 cd .. (3)回到自己的主文件夹 cd ~ ls命令:查看文件与目录 (4)查看目 ...

  8. 使用jQuery在javascript中自定义事件

    js中的自定义事件有attachEvent,addEventListener等等好多种,往往受困于浏览器兼容,而且代码写起来也相当麻烦.jQuery为我们解决了这个问题,几行代码就可以很好的实现事件的 ...

  9. PHP正则表达式函数学习

    正则表达式是在日常开发中经常用到的,通常一些使用频率过高的正则表达式都是直接粘贴复制,对于基础正则的使用还是要铭记于心的,今天抽时间整理一些php正则表达式的用法. 一.php中常用的正则表达式函数 ...

  10. java中的date类型转换为js中的日期显示 我改

    function dateChange(javaDate){ if(javaDate){ return javaDate.substr(0,10).replace(/-/g,"/" ...