【题目】D. Power Tower

【题意】给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案。n,q<=10^5,m,ai<=10^9。

【算法】扩展欧拉定理

【题解】扩展欧拉定理的形式:

$$a^b\equiv a^{b\%\varphi(p)+\varphi(p)} \ \ mod \ \ p \ \ (b\geq \varphi(p))$$

特别注意当b<φ(p)且(a,p)≠1时不变

假如现在是三个累乘幂a^(b^c),那么根据扩展欧拉定理:

$$a^{b^c}\ \ mod \ \ p\equiv a^{b^c\%\varphi(p)+\varphi(p)} \ \ mod \ \ p$$

这样我们只需要计算:

$$b^c\ \ mod \ \ \varphi(p)$$

更多个累乘幂的时候只需要不断递归取φ,直至1为止(φ(1)=1)。可以证明至多log(p)次可以得到答案。

这样计算累乘幂的复杂度就是O(log p*log n),也即一次询问的极限复杂度。

这里过程中用到的欧拉函数至多log p个,直接暴力求解,预处理复杂度O(log p*√n),用map存储,实现中可以直接记忆化。

总复杂度O(q*log p*log n)。

#include<cstdio>
#include<map>
#define ll long long
bool isdigit(char c){return c>=''&&c<='';}
int read(){
int s=,t=;char c;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
using namespace std;
const int maxn=;
map<int,int>p;
int a[maxn],n,m,q;
int phi(int n){
if(p.count(n))return p[n];
int ans=n,m=n;
for(int i=;i*i<=n;i++)if(n!=&&n%i==){
ans=ans/i*(i-);
while(n%i==)n/=i;
}
if(n>)ans=ans/n*(n-);
p[m]=ans;
return ans;
}
int mod(ll x,int y){return x<y?x:x%y+y;}//focus on add,because 2e9*2>int
int power(int x,int k,int m){
int ans=;
while(k){
if(k&)ans=mod(1ll*ans*x,m);
x=mod(1ll*x*x,m);
k>>=;
}
return ans;
}
int calc(int l,int r,int m){
if(l==r||m==)return mod(a[l],m);
return power(a[l],calc(l+,r,phi(m)),m);
}
int main(){
n=read();m=read();
for(int i=;i<=n;i++)a[i]=read();
q=read();
while(q--){
int l=read(),r=read();
printf("%d\n",calc(l,r,m)%m);
}
return ;
}

实现:

1.递归过程中直接返回ans+mod,这样下一层就自带+φ(m)了,最后输出答案记得%m就可以了。

2.快速幂过程中的取模改为 int mod(ll x,int y){return x<y?x:x%y+y;} ,这样到某一次数字超过y之后,后面每次都会强制超过y然后+y直至最后一次。

【BZOJ】4869 相逢是问候

#2142. 「SHOI2017」相逢是问候

因为至多log次,所以暴力计算维护线段树,n个数字,每个至多log p次修改,每次都要重新计算一次log p,快速幂log n。所以复杂度O(n log3n)。

预处理phi的递归序列,然后转化为非递归计算常数比较小。

代码见:zsnuo

有一种优化方法,因为快速幂至多1e8且都是以c为底,可以预处理c^(0~1e4),令t=c^(1e4),再预处理t^(0~1e4),这样对于一个数字查一下大表t再定位到小表c就行了。

这就是传说中的分段打表,具体见:ripped

【CodeForces】906 D. Power Tower 扩展欧拉定理的更多相关文章

  1. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  2. [CodeForces - 906D] Power Tower——扩展欧拉定理

    题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...

  3. Codeforces 906 D. Power Tower

    http://codeforces.com/contest/906/problem/D 欧拉降幂 #include<cstdio> #include<iostream> usi ...

  4. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  5. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  6. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  7. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  8. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

  9. [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】

    题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...

随机推荐

  1. 30行js让你的rem弹性布局适配所有分辨率(含竖屏适配)(转载)

    用rem来实现移动端的弹性布局是个好主意!用法如下: CSS @media only screen and (max-width: 320px), only screen and (max-devic ...

  2. pxe前期网络准备

    核心交换机:[H3C12510-HEXIN]vlan 3010 //如果存在则不需要创建[H3C12510-HEXIN]dis interface Bridge-Aggregation brief / ...

  3. testng对执行失败的用例,再次执行

    前段时间在网络上看到通过重写TestNG的接口,可以再次执行失败的测试用例,于是学习了,我之前的做法是当自己的脚本中碰到异常,就自动调用方法本身来达到再次执行用例的目的,这个过程中有设定重试的次数 对 ...

  4. [转帖] SQLNET.ORA的处理.

    被一个客户端连接远程数据库阻塞超时的问题困扰了好久,最后终于找到了答案  https://blog.csdn.net/herobox/article/details/16985097   Oracle ...

  5. Word Ladder II Graph

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  6. BZOJ5100 POI2018Plan metra(构造)

    容易发现要么1和n直接相连,要么两点距离即为所有dx,1+dx,n的最小值.若为前者,需要满足所有|d1-dn|都相等,挂两棵菊花即可.若为后者,将所有满足dx,1+dx,n=d1,n的挂成一条链,其 ...

  7. python参数传递方式

    原文地址:http://www.cnblogs.com/zhaopengcheng/p/5492183.html python中一切皆对象,函数中参数传递的是对象的引用. 1在函数中改变变量指向的对象 ...

  8. hbase 自定义过滤器

    1.首先生成自定义过滤器,生成jar包,然后拷贝到服务器hbase目录的lib下. 1.1 自定义过滤器CustomFilter import com.google.protobuf.InvalidP ...

  9. hihocoder1639 图书馆 [数学]

    已知数组a[]及其和sum, 求sum! / (a1!a2!...an!) 的个位数的值. 求某数的逆元表写成了求某数阶乘的逆元表,故一直没找到错误. P 是质数的幂B 表示质数,P 表示模数,cal ...

  10. bzoj 4871: [Shoi2017]摧毁“树状图”

    4871: [Shoi2017]摧毁“树状图” Time Limit: 25 Sec  Memory Limit: 512 MBSubmit: 53  Solved: 9[Submit][Status ...