在上一篇《TensorFlow入门之MNIST样例代码分析》中,我们讲解了如果来用一个三层全连接网络实现手写数字识别。但是在实际运用中我们需要更有效率,更加灵活的代码。在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块。并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效。

前向传播模块

首先将前向传播过程抽象出来,作为一个可以作为训练测试共享的模块,取名为mnist_inference.py,将这个过程抽象出来的好处是,一是可以保证在训练或者测试的过程中前向传播的一致性,提高代码的复用性。还有一点是我们可以更好地将其与滑动平均模型与模型持久化功能结合,更加灵活的来检验新的模型。mnist_inference.py代码如下:

# -*- coding: utf-8 -*-
import tensorflow as tf # 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 # 通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通
# 过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变
# 量重命名,所以可以直接通过相同的名字在训练时使用变量自身,而在测试时使用变量的滑动
# 平均值。在这个函数中也会将变量的正则化损失加入到损失集合。
def get_weight_variable(shape, regularizer):
weights = tf.get_variable(
"weights", shape,
initializer=tf.truncated_normal_initializer(stddev=0.1)
)
# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
# 使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses。
# 这是自定义的集合,不在TensorFlow自动管理的集合列表中。
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights # 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
# 声明第一层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer1'):
# 这里通过tf.get_variable或者tf.Variable没有本质区别,因为在训练或者测试
# 中没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次
# 调用之后需要将reuse参数设置为True。
weights = get_weight_variable(
[INPUT_NODE, LAYER1_NODE], regularizer
)
biases = tf.get_variable(
"biases", [LAYER1_NODE],
initializer=tf.constant_initializer(0.0)
)
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases) # 类似的声明第二层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer2'):
weights = get_weight_variable(
[LAYER1_NODE, OUTPUT_NODE], regularizer
)
biases = tf.get_variable(
"biases", [OUTPUT_NODE],
initializer=tf.constant_initializer(0.0)
)
layer2 = tf.matmul(layer1, weights) + biases # 返回最后前向传播的结果
return layer2

训练模块

将训练模型的模块提取出来,训练模块命名为mnist_train.py,在下面的代码中每过1000个step我们就保存一次模型。代码如下:

# -*- coding: utf-8 -*-
import os import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数。
import mnist_inference # 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "model.ckpt" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
# 直接使用mnist_inference.py中定义的前向传播过程
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step
)
variable_averages_op = variable_averages.apply(
tf.trainable_variables()
)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=y, labels=tf.argmax(y_, 1)
)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate)\
.minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
# 立的程序来完成。
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step],
feed_dict={x: xs, y_: ys})
# 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
# 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
# 据集上正确率的信息会有一个单独的程序来生成
print("After %d training step(s), loss on training "
"batch is %g." % (step, loss_value))
# 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
# 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”,
# 表示训练1000轮之后得到的模型。
saver.save(
sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
global_step=global_step
) def main(argv=None):
mnist = input_data.read_data_sets("./data", one_hot=True)
train(mnist) if __name__ == "__main__":
tf.app.run()

验证与测试模块

验证模块与测试模块可以对保存好的训练模型进行验证与测试,在下面的代码中我们选择每过10秒钟验证一个最新的模型。这样做的好处是可以将训练与验证或者测试分割开来,同时进行。该模块命名为mnist_eval.py

# -*- coding: utf-8 -*-
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py 和mnist_train.py中定义的常量和函数。
import mnist_inference
import mnist_train # 每10秒加载一次最新的模型,并且在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
# 定义输入输出的格式。
x = tf.placeholder(
tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input'
)
y_ = tf.placeholder(
tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input'
)
validate_feed = {x: mnist.validation.images,
y_: mnist.validation.labels} # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注ze正则化损失的值
# 所以这里用于计算正则化损失的函数被设置为None。
y = mnist_inference.inference(x, None) # 使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用
# tf.argmax(y,1)就可以得到输入样例的预测类别了。
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
# 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
# 前向传播过程。
variable_averages = tf.train.ExponentialMovingAverage(
mnist_train.MOVING_AVERAGE_DECAY
)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检验训练过程中正确率的
# 变化。
while True:
with tf.Session() as sess:
# tf.train.get_checkpoint_state函数会通过checkpoint文件自动
# 找到目录中最新模型的文件名。
ckpt = tf.train.get_checkpoint_state(
mnist_train.MODEL_SAVE_PATH
)
if ckpt and ckpt.model_checkpoint_path:
# 加载模型。
saver.restore(sess, ckpt.model_checkpoint_path)
# 通过文件名得到模型保存时迭代的轮数。
global_step = ckpt.model_checkpoint_path\
.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy,
feed_dict=validate_feed)
print("After %s training step(s), validation "
"accuracy = %g" % (global_step, accuracy_score))
else:
print("No checkpoint file found")
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("./data", one_hot=True)
evaluate(mnist) if __name__ == "__main__":
tf.app.run()

总结

这个样例是一个非常好的可以用来理解TensorFlow的程序,特别是TensorFlow的计算图的理解,还有模型持久化与恢复,变量的管理,滑动平均模型的实现等等。还有这种灵活的模块分块的思想也值得学习。

TensorFlow入门之MNIST最佳实践的更多相关文章

  1. TensorFlow入门之MNIST最佳实践-深度学习

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

  2. 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  3. TensorFlow入门之MNIST样例代码分析

    这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...

  4. Tensorflow之MNIST的最佳实践思路总结

    Tensorflow之MNIST的最佳实践思路总结   在上两篇文章中已经总结出了深层神经网络常用方法和Tensorflow的最佳实践所需要的知识点,如果对这些基础不熟悉,可以返回去看一下.在< ...

  5. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  6. 【转载】Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载六)Linux的网络配置

    本篇是Linux小白最佳实践第6篇,目的就是让白菜们了解Linux网络是如何配置的.Linux系统在服务器市场占有很大的份额,尤其在互连网时代,要使用计算机就离不开网络. 想每天能听到小妞的语音播报, ...

  7. Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载五)Linux系统的对话方式

    本篇是Linux小白最佳实践第5篇,目的就是让白菜们了解Linux进程之间是如何对话的.之前连载的几篇,在微信上引起了很多的反响,有人也反映图多文字少,感觉没有干货.本篇选了大部分是实战讲解的&quo ...

  8. RocketMQ入门(2)最佳实践

    转自:http://www.changeself.net/archives/rocketmq入门(2)最佳实践.html RocketMQ入门(2)最佳实践 一.服务端安装部署 我是在虚拟机中的Cen ...

  9. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

随机推荐

  1. mysql批量新增或者更新

    1.批量更新或者新增 1.单个新增或者更新 keyProperty新增完之后返回Id值

  2. shell中中括号的使用

    原文出处:https://www.jianshu.com/p/855c9fb373ff Shell 里面的方括号(包括单中括号与双中括号)可用于以下三种情况的判断: 算术比较. 比如一个变量是否为0, ...

  3. 使用maven&&make-distribution.sh编译打包spark源码

    1>基础环境准备: jdk1.8.0_101 maven 3.3.9scala2.11.8 安装好上述软件,配置好环境变量,并检查是否生效. 2>配置maven:intellij idea ...

  4. Windows ,获取硬盘物理序列号(VC++)

    #include <windows.h> BOOL GetHDID(PCHAR pIDBufer) {     HANDLE hDevice=NULL;    hDevice=::Crea ...

  5. Workbook对象的方法总结(一)

    import openpyxlwb=openpyxl.Workbook()print('1.添加前所有工作簿的名称是:',wb.get_sheet_names())wb.create_sheet('F ...

  6. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  7. 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm

    一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...

  8. UIWebView控件中 字体大小和字体样式的修改

    修改UIWebView控件中字体的样式: NSString *htmlString = [NSString stringWithContentsOfFile:self.webPath encoding ...

  9. 使用python实现用微信远程控制电脑

    首先,我们要先看看微信远程控制电脑的原理是什么呢? 我们可以利用Python的标准库控制本机电脑,然后要实现远程的话,我们可以把电子邮件作为远程控制的渠道,我们用Python自动登录邮箱检测邮件,当我 ...

  10. java 线程的简单理解

    想要实现线程可以继承Thread也可以实现接口runnable,在类中重写 run()方法在主函数调用start方法就可以开辟线程. 对于java对象都有一个wait()和notify().notif ...