BZOJ2439【中山市选2011】序列
题面
题解
设$f[i]$表示将$[1,i]$修改为递增的最小代价,
$g[i]$表示将$[i,n]$修改为递减的最小代价。
$L[i]$表示将$[1,i]$修改为倒$\text V$的代价
$$ \therefore L[i]=min_{2<j<i}\left\{max(g[i]-g[j],f[j])\right\} $$
$R[i]$同理
$$ \therefore ans=min_{2<i<n-1}\left\{L[i] + R[i]\right\} $$
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<climits>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(1e5 + 10);
int a[maxn], n, j;
long long f[maxn], g[maxn], L[maxn], R[maxn], ans = LLONG_MAX;
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read(), a[0] = -1, j = 2;
for(RG int i = 1; i <= n; i++) a[i] = read();
for(RG int i = 1; i <= n; i++)
f[i] = f[i - 1] + std::max(a[i - 1] - a[i] + 1, 0);
for(RG int i = n; i >= 1; i--)
g[i] = g[i + 1] + std::max(a[i + 1] - a[i] + 1, 0);
for(RG int i = 3; i < n - 1; i++)
{
while(j < i - 1 && std::max(f[j + 1], g[j + 1] - g[i])
<= std::max(f[j], g[j] - g[i])) ++j;
L[i] = std::max(f[j], g[j] - g[i]);
}
j = n - 1;
for(RG int i = n - 2; i > 2; i--)
{
while(j > i + 1 && std::max(g[j - 1], f[j - 1] - f[i])
<= std::max(g[j], f[j] - f[i])) --j;
R[i] = std::max(g[j], f[j] - f[i]);
}
for(RG int i = 3; i < n - 1; i++) ans = std::min(ans, L[i] + R[i]);
printf("%lld\n", ans);
return 0;
}
BZOJ2439【中山市选2011】序列的更多相关文章
- bzoj 2441 [中山市选2011]小W的问题
bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛
BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)
2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...
- bzoj2441 [中山市选2011]小W的问题(debug中)
2441: [中山市选2011]小W的问题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 487 Solved: 186[Submit][Statu ...
- BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量
BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人 ...
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
随机推荐
- Linq排序方式与Lambda排序方式比较以及OrderBy、ThenBy的使用
沿用之前某一篇文章的实体类与EF操作类代码.数据库中增加几条数据 Linq 的排序方式,下面例子是根据RoleId 升序,Name降序 EFContext<Member> efMember ...
- 初始Flask
一.Flask介绍(轻量级的框架,非常快速的就能把程序搭建起来) Flask 主要特点小而轻,原生组件几乎为0, 三方提供的组件请参考Django 非常全面,属于短小精悍型框架 Flask是一个基于P ...
- iOS中block类型大全
iOS中block类型大全 typedef的block 作为属性的block 作为变量的block 作为方法变量入参的block 作为方法参数的block 无名block 内联函数的block 递归调 ...
- Error creating bean with name xxxx,xxxx must be provided
原因: 继承父类的bean注入是set,get方法 问题: 自己的controller不能创建,因为需要的bean没有创建 解决方法: bean 注入,通过构造函数调用父类的set方法
- 解决qpidd服务安装不上的问题
前几天对一个文件夹命名,忘记了qpidd的路径在这个文件夹的下面,导致后来qpidd用不了. 并且有打开计算机-管理-服务时,看到Advanced MessageQueuing Protocol 未启 ...
- 初识android界面布局
1.活动 活动是android开发中最基本的概念,也是最容易吸引用户的地方,是一种可以包含用户界面的组件. Activity类中定义了7个回调方法,覆盖了活动生命周期的每一个环节.具体如下: (1)o ...
- SAP CX Upscale Commerce : SAP全新推出的电商云平台
大家好,我是Andy Chen,是SAP成都研究院年轻的SAP CX Upscale Commerce (后面将会以Upscale简称)开发团队的一名产品经理.CX的全称是Customer Exper ...
- BZOJ 1821 Group 部落划分 并查集
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1821 题目大意: 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所 ...
- vue部署到tomcat
# vue打包到tomcat部署步骤a.进入项目目录运行npm run devb.将dist目录复制到远程服务器下的tomcat/webapps下c.重启tomcatd.浏览器中访问 http:本机i ...
- Dictionary<string, object>
Dictionary<string, object> dcic = JsonHelper.DataRowFromJSON(resultdepth); foreach (var depthk ...