51nod1134(最长递增子序列)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1134
题意: 中文题诶~
思路: 直接暴力的话时间复杂度为O(n^2), 本题数据量为 5e4, 恐怕会超时;
我们维护当前最长的长度len, 用vis[j]存储长度为 j 的所有子序列中最小的末尾数值, 那么对于当前数据 a[i] , 如果数组vis中存在比其大的元素我们用a[i]替换掉vis中第一个比a[i]大的数, 若不存在,那么我们将a[i]加入 vis 末尾, 此时 vis 数组长度加一. 如此我们便维护了数组 vis 的性质, 最终得到的len就是答案了. 因为数组vis是递增的, 所以我们在查找时可以用二分(本人习惯用 upper_bound()), 那么时间复杂度便降为了 O(n*loglen).
代码:
#include <bits/stdc++.h>
#define MAXN 50010
using namespace std; const int MIN=-1e9; int main(void){
int n, a[MAXN], vis[MAXN], len=; //vis[i]表示长度为i的数列中最小的末尾值
scanf("%d", &n);
for(int i=; i<n; i++){
scanf("%d", &a[i]);
}
for(int i=; i<=n; i++){
vis[i]=MIN; //注意本题数据范围是 -1e9~1e9
}
vis[]=a[];
for(int i=; i<n; i++){
cout << endl;
int pos=upper_bound(vis+, vis+len+, a[i])-vis;
vis[pos]=a[i];
if(len<pos){ //维护最大长度
len=pos;
}
}
printf("%d\n", len);
}
51nod1134(最长递增子序列)的更多相关文章
- 51nod--1134 最长递增子序列 (动态规划)
题目: 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行: ...
- 51nod1134 最长递增子序列【动态规划】
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N ...
- 51nod-1134 最长递增子序列,用线段树将N^2的dp降到NlogN
题目链接 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行 ...
- (转载)最长递增子序列 O(NlogN)算法
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...
- 最长公共子序列(LCS)和最长递增子序列(LIS)的求解
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 最长递增子序列 O(NlogN)算法
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
随机推荐
- 【Beta】用户问题反馈及处理(一直更新)
1 用户id:吕* 张* 时间:20161211 问题描述:点击选择物理实验按钮(子菜单)选择实验,无响应 期望行为:点击选择物理实验按钮(子菜单)选择实验,选择框隐去,左侧数据栏出现对应选择实验的数 ...
- sql杀死进程
查询SQL所有的链接 并可以查看连接当前正在做什么操作..使用的什么语句.. SELECT spid, blocked, DB_NAME(sp.dbid) AS DBName, program_na ...
- Oracle修改字段类型方法总结
有一个表名为tb,字段段名为name,数据类型nchar(20). 1.假设字段数据为空,则不管改为什么字段类型,可以直接执行:alter table tb modify (name nvarchar ...
- jQuery的选择器中的通配符[id^='code'] 等示例及说明
1.选择器 (1)通配符: $("input[id^='code']");//id属性以code开始的所有input标签 $("input[id$='code']&quo ...
- [Asp.net]常见数据导入Excel,Excel数据导入数据库解决方案,总有一款适合你!
引言 项目中常用到将数据导入Excel,将Excel中的数据导入数据库的功能,曾经也查找过相关的内容,将曾经用过的方案总结一下. 方案一 NPOI NPOI 是 POI 项目的 .NET 版本.POI ...
- Java 解决约瑟夫问题
约瑟夫问题(有时也称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环.又称“丢手绢问题”.) 有这样一个故事,15个教徒和15个非教徒在深海遇险必须讲 ...
- JSP的9大内置对象
1.概述 JSP的这9个内置对象,都是servlet API实例,即在JSP页面内部,可以直接使用; ps:顺便说下JSP的4大范围: JSP的四种范围,分别为page.request.session ...
- 在sql语句中使用 xml for path 格式化字符串的方法总结
此方法实现的是将查询表中的某个字段,格式化成 字符串1,字符串2,字符串3...的格式 假设我们现在有两个表 分别是 分组表 grouped和分组成员表 groupuser grouped表有连个字 ...
- Linux学习之三--scp命令
scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器 ...
- Json.net日期格式化
1. 全局设置,可以在App_Global中配置 JsonSerializerSettings setting = new JsonSerializerSettings(); JsonConvert. ...