题意

题目链接

Sol

一道咕咕咕了好长时间的题

题解可以看这里

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e7 + 5e6 + 10, mod = 1e9 + 7, mod2 = 1e9 + 6;
int N, M, vis[MAXN], prime[MAXN], mu[MAXN], f[MAXN], tot;
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
void sieve(int N) {
vis[1] = 1; mu[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = 1;
if(!(i % prime[j])) {mu[i * prime[j]] = 0; break;}
else mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i <= tot; i++)
for(LL j = prime[i]; j <= N; j *= prime[i])
f[j] =prime[i];
for(int i = 1; i <= N; i++) if(!f[i]) f[i] = 1;
}
signed main() {
cin >> N >> M;
sieve(1e7 + 5e6);
//for(int i = 1; i <= 100; i++) printf("%d %d\n", i, f[i]);
int ans = 1;
for(int i = 1; i <= N; i++) {
if(f[i] == 1) continue;
ans = mul(ans, fp(f[i], 1ll * (N / i) * (M / i) % mod2));
}
cout << ans;
return 0;
}
/*
100000 50000 200 300
100 2 1 1
*/

Hackerrank GCD Product(莫比乌斯反演)的更多相关文章

  1. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  2. 【BZOJ2818】Gcd(莫比乌斯反演)

    [BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...

  3. 【HDU1695】GCD(莫比乌斯反演)

    [HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...

  4. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  5. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

    GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...

  7. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  8. hdu_1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  9. 【HDU4947】GCD Array (莫比乌斯反演+树状数组)

    BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...

随机推荐

  1. Elasticsearch地理位置总结

    更多内容请参考 : https://www.felayman.com 翻译版本:https://es.xiaoleilu.com/310_Geopoints/00_Intro.html 官方原文:ht ...

  2. Storm一致性事物

    Storm是一个分布式的流处理系统,利用anchor和ack机制保证所有的tuple都被处理成功.如果tuple出错,则可以被重传,但是如何保证出错的tuple只被处理一次呢?换句话说Storm如何保 ...

  3. Android NDK开发Crash错误定位

    在Android开发中,程序Crash分三种情况:未捕获的异常.ANR(Application Not Responding)和闪退(NDK引发错误).其中未捕获的异常根据logcat打印的堆栈信息很 ...

  4. ReentrantLock总体概括

    一.锁的实现原理: JAVA concurrent包下面的锁是通过AbstractQueuedSynchronizer内的Node类下面的state属性来实现的,并且锁的可重入属性也是通过state实 ...

  5. Sip协议

    会话初始协议.SIP是IETF标准进程的一部分,它是在诸如SMTP(简单邮件传送协议)和HTTP(超文本传送协议)基础之上建立起来的(请求应答的通讯模式).微信采用了自主研发的SYNC协议,他通过“握 ...

  6. php 类继承

    %token T_EXTENDS "extends (T_EXTENDS)" unticked_class_declaration_statement: class_entry_t ...

  7. redis允许内网访问

    如题有A.B两台服务器. A服务器上装有reis,内网IP:192.168.0.1 B服务器需要访问A服务器上的redis 一.修改A服务器上redis.conf文件 bind 192.168.0.1 ...

  8. (转)支持Multi Range Read索引优化

    支持Multi Range Read索引优化 原文:http://book.51cto.com/art/201701/529465.htm http://book.51cto.com/art/2016 ...

  9. sql 时期格式整理

    我们经常出于某种目的需要使用各种各样的日期格式,当然我们可以使用字符串操作来构造各种日期格式,但是有现成的函数为什么不用呢? SQL Server中文版的默认的日期字段datetime格式是yyyy- ...

  10. js函数技巧

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...