DP/斜率优化


  斜率优化基本题……等等,好像就没啥变化啊= =

  嗯目测这题跟仓库建设差不多?写题的时候倒是没想这么多……直接推了公式。

  $$f[i]=min\{f[j]+cal(j,i)+a[i]\}$$

  哦麻烦的还是这个$cal(j,i)$

  我们令$s[i]=\sum_{k=1}^{i}b[k], c[i]=\sum_{k=1}^{i}(b[k]*k)$

  则有$cal(j,i)=(s[i]-s[j])*i-(c[i]-c[j])$(问我怎么想到的?这个嘛……像这题这种要求“阶梯形求和”的,基本都是利用矩形和$\sum_{k=1}^{i}a[k]*i=s[i]*i$ 以及 阶梯形和 $ \sum (a[i]*i) $两种前缀和加加减减拼凑出来的)

  所以有$f[i]=min\{ f[j]+(s[i]-s[j])*i-(c[i]-c[j])+a[i] \}$

  单调性证明:$( j > k )$

\[ \begin{aligned} f[j]+(s[i]-s[j])*i-(c[i]-c[j])+a[i] &< f[k]+(s[i]-s[k])*i-(c[i]-c[j])+a[i] \\ f[j]-f[k]+c[j]-c[k] &< i*(s[j]-s[k]) \\ \frac{f[j]-f[k]+c[j]-c[k]}{s[j]-s[k]} &< i \end{aligned} \]

 /**************************************************************
Problem: 3437
User: Tunix
Language: C++
Result: Accepted
Time:2096 ms
Memory:44240 kb
****************************************************************/ //BZOJ 3437
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=1e6+;
typedef long long LL;
/******************tamplate*********************/
LL a[N],b[N],c[N],s[N],f[N];
int q[N],l,r,n;
inline double slop(int k,int j){
return double(f[j]-f[k]+c[j]-c[k])/double(s[j]-s[k]);
}
int main(){
n=getint();
F(i,,n) a[i]=getint();
F(i,,n){
b[i]=getint();
s[i]=s[i-]+b[i];
c[i]=c[i-]+b[i]*i;
}
F(i,,n){
while(l<r && slop(q[l],q[l+])<i)l++;
int t=q[l];
f[i]=f[t]+(s[i]-s[t])*i-c[i]+c[t]+a[i];
while(l<r && slop(q[r-],q[r])>slop(q[r],i))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 491  Solved: 272
[Submit][Status][Discuss]

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧
场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边
不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制
它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理
所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9

样例解释

选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。

数据范围与约定

对于100%的数据,1<=n<=1000000,0

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【3437】小P的牧场的更多相关文章

  1. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  2. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  3. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  4. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  5. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  6. bzoj 3437 小p的农场

    bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...

  7. 3437: 小P的牧场

    3437: 小P的牧场 思路 斜率优化. dp[i]表示到第i个点(第i个点按控制台)的最小代价. 代码 #include<cstdio> #include<iostream> ...

  8. 【BZOJ】3437: 小P的牧场

    题意 n个点,需要再一些点建立控制站,如果在第\(i\)个建站,贡献为\(a[i]\).假设前一个站为\(j<i\),则\([j+1, i]\)的点的贡献是\(\sum_{k=j+1}^{i} ...

  9. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

随机推荐

  1. 安装caffe框架所需文件

    安装caffe框架所需文件: 1.微软提供的快速卷积神经网络框架caffe-master安装包或者windows提供的caffe-windows安装包. 链接:http://pan.baidu.com ...

  2. Ionic实战三:Ionic 图片预览可放大缩小左右滑动demo-iClub图片预览

    这个demo的主要功能有两个,一个是首页的导航向上拉动会浮动在最上面的效果,另一个就是我们平时非常实用的功能,就是图片预览功能 点击可以放大图片,并且可以左右滑动,还可以双击放大缩小图片以及双手指控制 ...

  3. JAVAEE——SSH项目实战06:统计信息管理、Spring注解开发和EasyUI

    作者: kent鹏 转载请注明出处: http://www.cnblogs.com/xieyupeng/p/7190925.html 一.统计信息管理   二.Spring注解开发 1.service ...

  4. 【基础知识】.Net基础加强 第二天

    第02天 .Net基础加强 1. 封装 1> 属性的封装: 属性封装字段:把变化封装一下,保留用户的使用方式 2> 把方法的多个参数封装成一个对象 3> 将一堆代码封装到一个方法中 ...

  5. python使用web.py开发httpserver,解决post请求跨域问题

    使用web.py做http server开发时,遇到postman能够正常请求到数据,但是浏览器无法请求到数据,查原因之后发现是跨域请求的问题. 跨域请求,就是在浏览器窗口中,和某个服务端通过某个 “ ...

  6. PreEssentials与MFC集成使用

    ProEssentials是Gigasoft公司开发的一个功能十分强大的分发免费的工控图表.它提供了几乎所有的曲线显示形式,支持多种开发工具,提供以下接口供开发者调用:.NET(WinForm).AS ...

  7. Django中使用locals()函数的技巧

    对 current_datetime 的一次赋值操作: def current_datetime(request): now = datetime.datetime.now() return rend ...

  8. 「HNOI2018」转盘

    「HNOI2018」转盘 现场推出了大部分结论但是只写了 \(40\) 分暴力,被贺指导踩爆,现在还有点怀念 HNOI2018 贺指导对着镜子荒野行动的日子,那几天他云球迷瞎**指点篮球,被送上指导称 ...

  9. 【HDU】1693:Eat the Trees【插头DP】

    Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  10. poj 2623 Sequence Median 堆的灵活运用

    I - Sequence Median Time Limit:1000MS     Memory Limit:1024KB     64bit IO Format:%I64d & %I64u ...