DP/斜率优化


  斜率优化基本题……等等,好像就没啥变化啊= =

  嗯目测这题跟仓库建设差不多?写题的时候倒是没想这么多……直接推了公式。

  $$f[i]=min\{f[j]+cal(j,i)+a[i]\}$$

  哦麻烦的还是这个$cal(j,i)$

  我们令$s[i]=\sum_{k=1}^{i}b[k], c[i]=\sum_{k=1}^{i}(b[k]*k)$

  则有$cal(j,i)=(s[i]-s[j])*i-(c[i]-c[j])$(问我怎么想到的?这个嘛……像这题这种要求“阶梯形求和”的,基本都是利用矩形和$\sum_{k=1}^{i}a[k]*i=s[i]*i$ 以及 阶梯形和 $ \sum (a[i]*i) $两种前缀和加加减减拼凑出来的)

  所以有$f[i]=min\{ f[j]+(s[i]-s[j])*i-(c[i]-c[j])+a[i] \}$

  单调性证明:$( j > k )$

\[ \begin{aligned} f[j]+(s[i]-s[j])*i-(c[i]-c[j])+a[i] &< f[k]+(s[i]-s[k])*i-(c[i]-c[j])+a[i] \\ f[j]-f[k]+c[j]-c[k] &< i*(s[j]-s[k]) \\ \frac{f[j]-f[k]+c[j]-c[k]}{s[j]-s[k]} &< i \end{aligned} \]

 /**************************************************************
Problem: 3437
User: Tunix
Language: C++
Result: Accepted
Time:2096 ms
Memory:44240 kb
****************************************************************/ //BZOJ 3437
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
const int N=1e6+;
typedef long long LL;
/******************tamplate*********************/
LL a[N],b[N],c[N],s[N],f[N];
int q[N],l,r,n;
inline double slop(int k,int j){
return double(f[j]-f[k]+c[j]-c[k])/double(s[j]-s[k]);
}
int main(){
n=getint();
F(i,,n) a[i]=getint();
F(i,,n){
b[i]=getint();
s[i]=s[i-]+b[i];
c[i]=c[i-]+b[i]*i;
}
F(i,,n){
while(l<r && slop(q[l],q[l+])<i)l++;
int t=q[l];
f[i]=f[t]+(s[i]-s[t])*i-c[i]+c[t]+a[i];
while(l<r && slop(q[r-],q[r])>slop(q[r],i))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 491  Solved: 272
[Submit][Status][Discuss]

Description

背景

小P是个特么喜欢玩MC的孩纸。。。

描述

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧
场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边
不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制
它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理
所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2424
3142

Sample Output

9

样例解释

选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。

数据范围与约定

对于100%的数据,1<=n<=1000000,0

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【3437】小P的牧场的更多相关文章

  1. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  2. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  3. BZOJ 3437 小P的牧场(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...

  4. BZOJ 3437: 小P的牧场

    传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...

  5. bzoj 3437: 小P的牧场【斜率优化】

    emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...

  6. bzoj 3437 小p的农场

    bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...

  7. 3437: 小P的牧场

    3437: 小P的牧场 思路 斜率优化. dp[i]表示到第i个点(第i个点按控制台)的最小代价. 代码 #include<cstdio> #include<iostream> ...

  8. 【BZOJ】3437: 小P的牧场

    题意 n个点,需要再一些点建立控制站,如果在第\(i\)个建站,贡献为\(a[i]\).假设前一个站为\(j<i\),则\([j+1, i]\)的点的贡献是\(\sum_{k=j+1}^{i} ...

  9. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

随机推荐

  1. web到service简单原理例子

    这是目前的理解 附上服务端源码 package com.lsw.server; import java.io.*; import java.net.*; import java.util.HashMa ...

  2. 牛客练习赛3 F - 监视任务

    链接:https://www.nowcoder.net/acm/contest/13/F来源:牛客网 题目描述

  3. 让Xcode8.0支持iOS11.2设备真机测试

    最新支持11.2 (15C5097c)! 11.1 全版本! Xcode只可以支持iPhone手机对应iOS系统以下的真机测试.一般想要支持最新的iPhone手机系统,有两个方法. 第一.就需要更新X ...

  4. 1016 Phone Bills (25)(25 point(s))

    problem A long-distance telephone company charges its customers by the following rules: Making a lon ...

  5. MySQL 语句分析

    公司使用的数据库是 MySQL 数据库,我对于 MySQL 的了解仅仅是上学的时候学过PHP略微了解. 我认为,作为一个后端程序员,除了在意功能能不能实现之外, 在实现功能之后,还要去想有没有更好的办 ...

  6. bzoj 2844 子集异或和名次

    感谢: http://blog.sina.cn/dpool/blog/s/blog_76f6777d0101d0mr.html 的讲解(特别是2^(n-m)的说明). /*************** ...

  7. VC 操作 EXCEL---插入工作表(Insert.Sheet)方法

    看到的资料 http://bbs.csdn.net/topics/198565 自己总结一下 //插入到nIndex工作表之前 void InsertSheet(int nIndex) { sheet ...

  8. HDU 2553 N皇后问题(深搜DFS)

    N皇后问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. JavaScript将具有父子关系的原始数据格式化成树形结构数据(id,pid)

    前几天遇到一个树型组件(类似树形菜单)数据格式化的问题,由于后台把原始查询的数据直接返回给前端,父子关系并未构建,因此需要前端JS来完成,后台返回的数据和下面的测试数据相似. var data=[ { ...

  10. Google Code Jam 2009 Qualification Round Problem B. Watersheds

    https://code.google.com/codejam/contest/90101/dashboard#s=p1 Problem Geologists sometimes divide an ...